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addRelativePose
Add relative pose to pose graph

Syntax
addRelativePose(poseGraph,relPose)
addRelativePose(poseGraph,relPose,infoMatrix)
addRelativePose(poseGraph,relPose,infoMatrix,fromNodeID)
addRelativePose(poseGraph,relPose,infoMatrix,fromNodeID,toNodeID)
[edge,edgeID] = addRelativePose( ___ )

Description
addRelativePose(poseGraph,relPose) creates a pose node and uses an edge
specified by relPose to connect it to the last node in the pose graph.

addRelativePose(poseGraph,relPose,infoMatrix) also specifies the information
matrix as part of the edge constraint, which represents the uncertainty of the pose
measurement.

addRelativePose(poseGraph,relPose,infoMatrix,fromNodeID) creates a new
pose node and connects it to the specific node specified by fromNodeID.

addRelativePose(poseGraph,relPose,infoMatrix,fromNodeID,toNodeID)
creates an edge by specifying a relative pose between existing nodes specified by
fromNodeID and toNodeID. This edge is called a loop closure.

[edge,edgeID] = addRelativePose( ___ ) returns the newly added edge and edge
ID using any of the previous syntaxes.

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object
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Pose graph, specified as a poseGraph or poseGraph3D object.

relPose — Relative pose between nodes
[x y theta] vector | [x y z qw qx qy qz] vector

Relative pose between nodes, specified as one of the following:

For poseGraph (2-D), the pose is a [x y theta] vector, which defines a xy-position and
orientation angle, theta.

For poseGraph3D, the pose is a [x y z qw qx qy qz] vector, which defines by an xyz-
position and quaternion orientation, [qw qx qy qz]

Note Many other sources for 3-D pose graphs, including .g2o formats, specify the
quaternion orientation in a different order, for example, [qx qy qz qw]. Check the
source of your pose graph data before adding nodes to your poseGraph3D object.

infoMatrix — Information matrix
6-element vector | 21-element vector

Information matrix, specified as a 6-element or 21-element vector. This vector contains
the elements of the upper triangle of the square information matrix (compact form). The
information matrix is the inverse of the covariance of the pose and represents the
uncertainty of the measurement. If the pose vector is [x y theta], the covariance is a
3-by-3 matrix of pairwise covariance calculations. Typically, the uncertainty is determined
by the sensor model.

For poseGraph (2-D), the information matrix is a six-element vector. The default is [1 0
0 1 0 1].

For poseGraph3D, the information matrix is a 21-element vector. The default is [1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1].

fromNodeID — Node to attach from
positive integer

Node to attach from, specified as a positive integer. This integer corresponds to the node
ID of a node in poseGraph. When specified without toNodeID, addRelativePose
creates a new node and adds an edge between the new node and the fromNodeID node.
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toNodeID — Node to attach to
positive integer

Node to attach to, specified as a positive integer. This integer corresponds to the node ID
of a node in poseGraph. addRelativePose adds an edge between this node and the
fromNodeID node.

Output Arguments
edge — Added edge
two-element vector

Added edge, returned as a two-element vector. An edge is defined by the IDs of the two
nodes that it connects with a relative pose.

edgeID — ID of added edge
positive integer

ID of added edge, returned as a positive integer.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code
generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
specifies an upper bound on the number of edges and nodes allowed in the pose graph
when generating code. This limit is only required when generating code.

poseGraph =
poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
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See Also
Functions
edgeConstraints | edges | findEdgeID | nodes | optimizePoseGraph |
removeEdges

Objects
lidarSLAM | poseGraph | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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allanvar
Allan variance

Syntax
[avar,tau] = allanvar(Omega)
[avar,tau] = allanvar(Omega,m)
[avar,tau] = allanvar(Omega,ptStr)
[avar,tau] = allanvar(___,fs)

Description
Allan variance is used to measure the frequency stability of oscillation for a sequence of
data in the time domain. It can also be used to determine the intrinsic noise in a system
as a function of the averaging time. The averaging time series τ can be specified as τ =
m/fs. Here fs is the sampling frequency of data, and m is a list of ascending averaging
factors (such as 1, 2, 4, 8, …).

[avar,tau] = allanvar(Omega) returns the Allan variance avar as a function of
averaging time tau. The default averaging time tau is an octave sequence given as (1,
2, ..., 2floor{log2[(N-1)/2]}), where N is the number of samples in Omega. If Omega is specified as
a matrix, allanvar operates over the columns of omega.

[avar,tau] = allanvar(Omega,m) returns the Allan variance avar for specific
values of tau defined by m. Since the default frequency fs is assumed to be 1, the output
tau is exactly same with m.

[avar,tau] = allanvar(Omega,ptStr) sets averaging factor m to the specified point
specification, ptStr. Since the default frequency fs is 1, the output tau is exactly equal
to the specified m. ptStr can be specified as 'octave' or 'decade'.

[avar,tau] = allanvar(___,fs) also allows you to provide the sampling frequency
fs of the input data omega in Hz. This input parameter can be used with any of the
previous syntaxes.
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Examples

Determine Allan Variance of Single Axis Gyroscope

Load gyroscope data from a MAT file, including the sample rate of the data in Hz.
Calculate the Allan variance.

load('LoggedSingleAxisGyroscope','omega','Fs')
[avar,tau] = allanvar(omega,'octave',Fs);

Plot the Allan variance on a loglog plot.

loglog(tau,avar)
xlabel('\tau')
ylabel('\sigma^2(\tau)')
title('Allan Variance')
grid on

 allanvar
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Determine Allan Deviation at Specific Values of τ

Generate sample gyroscope noise, including angle random walk and rate random walk.

numSamples = 1e6;
Fs = 100;
nStd = 1e-3;
kStd = 1e-7;
nNoise = nStd.*randn(numSamples,1);
kNoise = kStd.*cumsum(randn(numSamples,1));
omega = nNoise+kNoise;
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Calculate the Allan deviation at specific values of m = τ. The Allan deviation is the square
root of the Allan variance.

m = 2.^(9:18);
[avar,tau] = allanvar(omega,m,Fs);
adev = sqrt(avar);

Plot the Allan deviation on a loglog plot.

loglog(tau,adev)
xlabel('\tau')
ylabel('\sigma(\tau)')
title('Allan Deviation')
grid on

 allanvar
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Input Arguments
Omega — Input data
N-by-1 vector | N-by-M matrix

Input data specified as an N-by-1 vector or an N-by-M matrix. N is the number of samples,
and M is the number of sample sets. If specified as a matrix, allanvar operates over the
columns of Omega.
Data Types: single | double

m — Averaging factor
scalar | vector

Averaging factor, specified as a scalar or vector with ascending integer values less than
(N-1)/2, where N is the number of samples in Omega.
Data Types: single | double

ptStr — Point specification of m
'octave' (default) | 'decade'

Point specification of m, specified as 'octave' or 'decade'. Based on the value of
ptStr, m is specified as following:

• If ptStr is specified as 'octave', m is:

20, 21...2 log2
N − 1

2

• If ptStr is specified as 'decade', m is:

100, 101...10 log10
N − 1

2

N is the number of samples in Omega.

fs — Basic frequency of input data in Hz
scalar

Basic frequency of the input data, Omega, in Hz, specified as a positive scalar.
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Data Types: single | double

Output Arguments
avar — Allan variance of input data
vector | matrix

Allan variance of input data at tau, returned as a vector or matrix.

tau — Averaging time of Allan variance
vector | matrix

Averaging time of Allan variance, returned as a vector, or a matrix.

See Also
gyroparams | imuSensor

Introduced in R2019a
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angdiff
Difference between two angles

Syntax
delta = angdiff(alpha,beta)

delta = angdiff(alpha)

Description
delta = angdiff(alpha,beta) calculates the difference between the angles alpha
and beta. This function subtracts alpha from beta with the result wrapped on the
interval [-pi,pi]. You can specify the input angles as single values or as arrays of
angles that have the same number of values.

delta = angdiff(alpha) returns the angular difference between adjacent elements of
alpha along the first dimension whose size does not equal 1. If alpha is a vector of
length n, the first entry is subtracted from the second, the second from the third, etc. The
output, delta, is a vector of length n-1. If alpha is an m-by-n matrix with m greater than
1, the output, delta, will be a matrix of size m-1-by-n.

Examples

Calculate Difference Between Two Angles

d = angdiff(pi,2*pi)

d = 3.1416
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Calculate Difference Between Two Angle Arrays

d = angdiff([pi/2 3*pi/4 0],[pi pi/2 -pi])

d = 1×3

    1.5708   -0.7854   -3.1416

Calculate Angle Differences of Adjacent Elements

angles = [pi pi/2 pi/4 pi/2];
d = angdiff(angles)

d = 1×3

   -1.5708   -0.7854    0.7854

Input Arguments
alpha — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array. This is
the angle that is subtracted from beta when specified.
Example: pi/2

beta — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array of the
same size as alpha. This is the angle that alpha is subtracted from when specified.
Example: pi/2

 angdiff
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Output Arguments
delta — Difference between two angles
scalar | vector | matrix | multidimensional array

Angular difference between two angles, returned as a scalar, vector, or array. delta is
wrapped to the interval [-pi,pi].

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2015a
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axang2quat
Convert axis-angle rotation to quaternion

Syntax
quat = axang2quat(axang)

Description
quat = axang2quat(axang) converts a rotation given in axis-angle form, axang, to
quaternion, quat.

Examples

Convert Axis-Angle Rotation to Quaternion

axang = [1 0 0 pi/2];
quat = axang2quat(axang)

quat = 1×4

    0.7071    0.7071         0         0

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).

 axang2quat
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Example: [1 0 0 pi/2]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion,
one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2axang

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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axang2rotm
Convert axis-angle rotation to rotation matrix

Syntax
rotm = axang2rotm(axang)

Description
rotm = axang2rotm(axang) converts a rotation given in axis-angle form, axang, to an
orthonormal rotation matrix, rotm. When using the rotation matrix, premultiply it with
the coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Rotation Matrix

axang = [0 1 0 pi/2];
rotm = axang2rotm(axang)

rotm = 3×3

    0.0000         0    1.0000
         0    1.0000         0
   -1.0000         0    0.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

 axang2rotm
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Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2axang

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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axang2tform
Convert axis-angle rotation to homogeneous transformation

Syntax
tform = axang2tform(axang)

Description
tform = axang2tform(axang) converts a rotation given in axis-angle form, axang, to
a homogeneous transformation matrix, tform. When using the transformation matrix,
premultiply it with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Homogeneous Transformation

axang = [1 0 0 pi/2]; 
tform = axang2tform(axang)

tform = 4×4

    1.0000         0         0         0
         0    0.0000   -1.0000         0
         0    1.0000    0.0000         0
         0         0         0    1.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

 axang2tform
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Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the transformation matrix, premultiply it with the
coordinates to be formed (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2axang

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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buildMap
Build occupancy map from lidar scans

Syntax
map = buildMap(scans,poses,mapResolution,maxRange)

Description
map = buildMap(scans,poses,mapResolution,maxRange) creates a
occupancyMap map by inserting lidar scans at the given poses. Specify the resolution
of the resulting map, mapResolution, and the maximum range of the lidar sensor,
maxRange.

Examples

Build Occupancy Map from Lidar Scans and Poses

The buildMap function takes in lidar scan readings and associated poses to build an
occupancy grid as lidarScan objects and associated [x y theta] poses to build an
occupancyMap.

Load scan and pose estimates collected from sensors on a robot in a parking garage. The
data collected is correlated using a lidarSLAM algorithm, which performs scan matching
to associate scans and adjust poses over the full robot trajectory. Check to make sure
scans and poses are the same length.

load scansAndPoses.mat
length(scans) == length(poses)

ans = logical
   1

 buildMap
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Build the map. Specify the scans and poses in the buildMap function and include the
desired map resolution (10 cells per meter) and the max range of the lidar (19.2 meters).
Each scan is added at the associated poses and probability values in the occupancy grid
are updated.

occMap = buildMap(scans,poses,10,19.2);
figure
show(occMap)
title('Occupancy Map of Garage')
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Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an
optimized pose graph of the robot trajectory. To get an occupancy map from the
associated poses and scans, use the buildMap function.

Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking
garage on a Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a
high frequency and each scan is not needed for SLAM. Therefore, down sample the scans
by selecting only every 40th scan.

load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure
threshold, and search radius. Tune these parameters for your specific robot and
environment. Create the lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;

Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to
compare each added scan to previously added ones. To improve the map, the object
optimizes the pose graph whenever it detects a loop closure. Every 10 scans, display the
stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end

 buildMap
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View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling
buildMap with the scans and poses. Use the same map resolution and max range you
used with the SLAM object.

[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')
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Input Arguments
scans — Lidar scans
cell array of lidarScan objects

Lidar scans used to build the map, specified as a cell array of lidarScan objects.

poses — Poses of lidar scans
n-by-3 matrix

Poses of lidar scans, specified as an n-by-3 matrix. Each row is an [x y theta] vector
representing the xy-position and orientation angle of a scan.

 buildMap
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mapResolution — Resolution of occupancy grid
positive integer

Resolution of the output occupancyMap map, specified as a positive integer in cells per
meter.

maxRange — Maximum range of lidar sensor
positive scalar

Maximum range of lidar sensor, specified as a positive scalar in meters. Points in the
scans outside this range are ignored.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ['MapWidth',10]

MapWidth — Width of occupancy grid
positive scalar

Width of the occupancy grid, specified as the comma-separated pair consisting of
'MapWidth' and a positive scalar. If this value is not specified, the map is automatically
scaled to fit all laser scans.

MapHeight — Height of occupancy grid
positive scalar

Height of occupancy grid, specified as the comma-separated pair consisting of
'MapHeight' and a positive scalar. If this value is not specified, the map is automatically
scaled to fit all laser scans.

Output Arguments
map — Occupancy Map
occupancyMap object

Occupancy map, returned as a occupancyMap object.
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See Also
Functions
lidarScan | matchScans | matchScansGrid | transformScan

Classes
lidarSLAM | occupancyMap

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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cart2hom
Convert Cartesian coordinates to homogeneous coordinates

Syntax
hom = cart2hom(cart)

Description
hom = cart2hom(cart) converts a set of points in Cartesian coordinates to
homogeneous coordinates.

Examples

Convert 3-D Cartesian Points to Homogeneous Coordinates

c = [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975];
h = cart2hom(c)

h = 2×4

    0.8147    0.1270    0.6324    1.0000
    0.9058    0.9134    0.0975    1.0000

Input Arguments
cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, specified as an n-by-(k–1) matrix, containing n points. Each row of
cart represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.
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Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Output Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, returned as an n-by-k matrix, containing n points. k must be greater
than or equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hom2cart

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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connect
Connect poses for given connection type

Syntax
[pathSegments,pathCosts] = connect(connectionObj,start,goal)
[pathSegments,pathCosts] = connect(connectionObj,start,
goal,'PathSegments','all')

Description
[pathSegments,pathCosts] = connect(connectionObj,start,goal) connects
the start and goal poses using the specified dubinsConnection object. The path
segment object with the lowest cost is returned.

[pathSegments,pathCosts] = connect(connectionObj,start,
goal,'PathSegments','all') returns all possible path segments as a cell array with
their associated costs.

Examples

Connect Poses Using Dubins Connection Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);

1 Functions — Alphabetical List

1-30



Show the generated path.

show(pathSegObj{1})

Connect Poses Using ReedsShepp Connection Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

 connect
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startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Input Arguments
connectionObj — Path connection type
dubinsPathSegment object | reedsSheppPathSegment object

Path connection type, specified as a dubinsConnection or reedsSheppConnection
object. This object defines the parameters of the connection, including the minimum
turning radius of the robot and the valid motion types.

start — Initial pose of robot
[x, y, Θ] vector or matrix

This property is read-only.

Initial pose of the robot at the start of the path segment, specified as an [x, y, Θ] vector or
matrix. Each row of the matrix corresponds to a different start pose.

x and y are in meters. Θ is in radians.

The connect function supports:

• Singular start pose with singular goal pose.
• Multiple start pose with singular goal pose.
• Singular start pose with multiple goal pose.
• Multiple start pose with multiple goal pose.

The output pathSegments cell array size reflects the singular or multiple pose options.

goal — Goal pose of robot
[x, y, Θ] vector or matrix

This property is read-only.

Goal pose of the robot at the end of the path segment, specified as an [x, y, Θ] vector or
matrix. Each row of the matrix corresponds to a different goal pose.

x and y are in meters. Θ is in radians.

The connect function supports:

• Singular start pose with singular goal pose.

 connect
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• Multiple start pose with singular goal pose.
• Singular start pose with multiple goal pose.
• Multiple start pose with multiple goal pose.

The output pathSegments cell array size reflects the singular or multiple pose options.

Output Arguments
pathSegments — Path segments
cell array of objects

Path segments, specified as a cell array of objects. The type of object depends on the
input connectionObj. The size of the cell array depends on whether you use singular or
multiple start and goal poses. By default, the function returns the path with the lowest
cost for each start and goal pose. When call connect using the
'PathSegments','all' name-value pair, the cell array contains all valid path segments
between the specified start and goal poses.

pathCosts — Cost of path segment
positive numeric scalar | positive numeric vector | positive numeric matrix

Cost of path segments, specified as a positive numeric scalar, vector, or matrix. Each
element of the cost vector or matrix corresponds to a path segment in pathSegment. By
default, the function returns the path with the lowest cost for each start and goal pose.
Example: [7.6484,7.5122]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
interpolate | show

Objects
dubinsConnection | dubinsPathSegment | reedsSheppConnection |
reedsSheppPathSegment

Introduced in R2019b
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createPlanningTemplate
Create sample implementation for path planning interface

Syntax
createPlanningTemplate
createPlanningTemplate("StateValidator")

Description
createPlanningTemplate creates a planning template for a subclass of the
nav.StateSpace class. The function opens a file in the MATLAB® Editor. Save your
custom implementation and ensure the file is available on the MATLAB path. Alternative
syntax: createPlanningTemplate("StateSpace")

createPlanningTemplate("StateValidator") creates a template for a subclass of
the nav.StateValidator class.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state space definition and sampler to use with path
planning algorithms. A simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateSpace class. For this example, create a property for the
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uniform and normal distributions. You can specify any additional user-defined properties
here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
    end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and
define its boundaries. Alternatively, you can add input arguments to the function and pass
the variables in when you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values

using predefined NormalDistribution and UniformDistribution classes.
• Specify any other user-defined property values here.

 methods
        function obj = MyCustomStateSpace
            spaceName = "MyCustomStateSpace";
            numStateVariables = 3;
            stateBounds = [-100 100;  % [min max]
                           -100 100;
                           -100 100];
            
            obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
            
            obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
            obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
            % User-defined property values here
        end
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Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same name, state bounds, and distributions.

        function copyObj = copy(obj)
            copyObj = feval(class(obj));
            copyObj.StateBounds = obj.StateBounds;
            copyObj.UniformDistribution = obj.UniformDistribution.copy;
            copyObj.NormalDistribution = obj.NormalDistribution.copy;
        end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the
state values get saturated at the minimum or maximum values for the state bounds.

        function boundedState = enforceStateBounds(obj, state)
            nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
            boundedState = state;
            boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
                obj.StateBounds(:,2)');
            
        end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes
to constrain the uniform distribution to a nearby state within a certain distance and
sample multiple states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the
varying input arguments.

         function state = sampleUniform(obj, varargin)
            narginchk(1,4);
            [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
            
            obj.UniformDistribution.RandomVariableLimits = stateBounds;
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            state = obj.UniformDistribution.sample(numSamples);
        end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple
syntaxes for sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

        function state = sampleGaussian(obj, meanState, stdDev, varargin)    
            narginchk(3,4);
            
            [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
            
            obj.NormalDistribution.Mean = meanState;
            obj.NormalDistribution.Covariance = diag(stdDev.^2);
            
            state = obj.NormalDistribution.sample(numSamples);
            state = obj.enforceStateBounds(state);
            
        end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input,
fraction, to determine how to sample along the path between two states. For this
example, define a basic linear interpolation method using the difference between states.

        function interpState = interpolate(obj, state1, state2, fraction)
            narginchk(4,4);
            [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
            
            stateDiff = state2 - state1;
            interpState = state1 + fraction' * stateDiff;
        end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the
state1 and state2 inputs to define the start and end positions. Both inputs can be a
single state (row vector) or multiple states (matrix of row vectors). For this example,
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calculate the distance based on the Euclidean distance between each pair of state
positions.

        function dist = distance(obj, state1, state2)
            
            narginchk(3,3);
            
            nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
            nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

            stateDiff = bsxfun(@minus, state2, state1);
            dist = sqrt( sum( stateDiff.^2, 2 ) );
        end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an
object for your state space.

Create Custom State Space Validator for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state validation class. State validation is used with
path planning algorithms to ensure valid paths. The template function provides a basic
implementation for example purposes.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation. Save this file.

createPlanningTemplate("StateValidator")

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateValidator class. You can specify any additional user-
defined properties here.

classdef MyCustomStateValidator < nav.StateValidator & ...
        matlabshared.planning.internal.EnforceScalarHandle
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    properties
       % User-defined properties
    end

Save your custom state validator class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space validator and specify the state
space object. Set a default value for the state space if one is not provided. Call the
constructor of the base class. Initialize any other user-defined properties.

methods
        function obj = MyCustomStateValidator(space)
            narginchk(0,1)
            
            if nargin == 0
                space = stateSpaceSE2;
            end

            obj@nav.StateValidator(space);
            
           % Initialize user-defined properties
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same type.

        function copyObj = copy(obj)
            copyObj = feval(class(obj), obj.StateSpace);
        end

Check State Validity

Define how a given state is validated. The state input can either be a single row vector,
or a matrix of row vectors for multiple states. Customize this function for any special
validation behavior for your state space like collision checking against obstacles.

        function isValid = isStateValid(obj, state) 
            narginchk(2,2);
            nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ...
                "isStateValid", "state");
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            bounds = obj.StateSpace.StateBounds';
            inBounds = state >= bounds(1,:) & state <= bounds(2,:);
            isValid = all(inBounds, 2);
            
        end

Check Motion Validity

Define how to generate the motion between states and determine if it is valid. For this
example, use linspace to evenly interpolate between states and check if these states are
valid using isStateValid. Customize this function to sample between states or consider
other analytical methods for determining if a vehicle can move between given states.

        function [isValid, lastValid] = isMotionValid(obj, state1, state2)
            narginchk(3,3);
            state1 = nav.internal.validation.validateStateVector(state1, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state1");
            state2 = nav.internal.validation.validateStateVector(state2, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state2");
            
            if (~obj.isStateValid(state1))
                error("statevalidator:StartStateInvalid", "The start state of the motion is invalid.");
            end
            
            % Interpolate at a fixed interval between states and check state validity
            numInterpPoints = 100;
            interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints));
            interpValid = obj.isStateValid(interpStates);
            
            % Look for invalid states. Set lastValid state to index-1.
            firstInvalidIdx = find(~interpValid, 1);
            if isempty(firstInvalidIdx)
                isValid = true;
                lastValid = state2;
            else
                isValid = false;
                lastValid = interpStates(firstInvalidIdx-1,:);
            end
            
        end

Terminate the methods and class sections.
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    end
end

Save your state space validator class definition. You can now use the class constructor to
create an object for validation of states for a given state space.

See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 |
validatorOccupancyMap

Introduced in R2019b
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ecompass
Orientation from magnetometer and accelerometer readings

Syntax
orientation = ecompass(accelerometerReading,magnetometerReading)
orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat)
orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat,'ReferenceFrame',RF)

Description
orientation = ecompass(accelerometerReading,magnetometerReading)
returns a quaternion that can rotate quantities from a parent (NED) frame to a child
(sensor) frame.

orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat) specifies the orientation format as quaternion or rotation
matrix.

orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat,'ReferenceFrame',RF) also allows you to specify the reference
frame RF of the orientation output. Specify RF as 'NED' (North-East-Down) or 'ENU'
(East-North-Up). The default value is 'NED'.

Examples

Determine Declination of Boston

Use the known magnetic field strength and proper acceleration of a device pointed true
north in Boston to determine the magnetic declination of Boston.

Define the known acceleration and magnetic field strength in Boston.
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magneticFieldStrength = [19.535 -5.109 47.930];
properAcceleration = [0 0 9.8];

Pass the magnetic field strength and acceleration to the ecompass function. The
ecompass function returns a quaternion rotation operator. Convert the quaternion to
Euler angles in degrees.

q = ecompass(properAcceleration,magneticFieldStrength);
e = eulerd(q,'ZYX','frame');

The angle, e, represents the angle between true north and magnetic north in Boston. By
convention, magnetic declination is negative when magnetic north is west of true north.
Negate the angle to determine the magnetic declination.

magneticDeclinationOfBoston = -e(1)

magneticDeclinationOfBoston = -14.6563

Return Rotation Matrix

The ecompass function fuses magnetometer and accelerometer data to return a
quaternion that, when used within a quaternion rotation operator, can rotate quantities
from a parent (NED) frame to a child frame. The ecompass function can also return
rotation matrices that perform equivalent rotations as the quaternion operator.

Define a rotation that can take a parent frame pointing to magnetic north to a child frame
pointing to geographic north. Define the rotation as both a quaternion and a rotation
matrix. Then, convert the quaternion and rotation matrix to Euler angles in degrees for
comparison.

Define the magnetic field strength in microteslas in Boston, MA, when pointed true north.

m = [19.535 -5.109 47.930];
a = [0 0 9.8];

Determine the quaternion and rotation matrix that is capable of rotating a frame from
magnetic north to true north. Display the results for comparison.

q = ecompass(a,m);
quaterionEulerAngles = eulerd(q,'ZYX','frame')
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quaterionEulerAngles = 1×3

   14.6563         0         0

r = ecompass(a,m,'rotmat');
theta = -asin(r(1,3));
psi = atan2(r(2,3)/cos(theta),r(3,3)/cos(theta));
rho = atan2(r(1,2)/cos(theta),r(1,1)/cos(theta));
rotmatEulerAngles = rad2deg([rho,theta,psi])

rotmatEulerAngles = 1×3

   14.6563         0         0

Determine Gravity Vector

Use ecompass to determine the gravity vector based on data from a rotating IMU.

Load the inertial measurement unit (IMU) data.

load 'rpy_9axis.mat' sensorData Fs

Determine the orientation of the sensor body relative to the local NED frame over time.

orientation = ecompass(sensorData.Acceleration,sensorData.MagneticField);

To estimate the gravity vector, first rotate the accelerometer readings from the sensor
body frame to the NED frame using the orientation quaternion vector.

gravityVectors = rotatepoint(orientation,sensorData.Acceleration);

Determine the gravity vector as an average of the recovered gravity vectors over time.

gravityVectorEstimate = mean(gravityVectors,1)

gravityVectorEstimate = 1×3

    0.0000   -0.0000   10.2102
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Track Spinning Platform

Fuse modeled accelerometer and gyroscope data to track a spinning platform using both
idealized and realistic data.

Generate Ground-Truth Trajectory

Describe the ground-truth orientation of the platform over time. Use the
kinematicTrajectory System object™ to create a trajectory for a platform that has no
translation and spins about its z-axis.

duration = 12;
fs = 100;
numSamples = fs*duration;

accelerationBody = zeros(numSamples,3);

angularVelocityBody = zeros(numSamples,3);
zAxisAngularVelocity = [linspace(0,4*pi,4*fs),4*pi*ones(1,4*fs),linspace(4*pi,0,4*fs)]';
angularVelocityBody(:,3) = zAxisAngularVelocity;

trajectory = kinematicTrajectory('SampleRate',fs);

[~,orientationNED,~,accelerationNED,angularVelocityNED] = trajectory(accelerationBody,angularVelocityBody);

Model Receiving IMU Data

Use an imuSensor System object to mimic data received from an IMU that contains an
ideal magnetometer and an ideal accelerometer.

IMU = imuSensor('accel-mag','SampleRate',fs);
[accelerometerData,magnetometerData] = IMU(accelerationNED, ...
                                           angularVelocityNED, ...
                                           orientationNED);

Fuse IMU Data to Estimate Orientation

Pass the accelerometer data and magnetometer data to the ecompass function to
estimate orientation over time. Convert the orientation to Euler angles in degrees and
plot the result.

orientation = ecompass(accelerometerData,magnetometerData);
orientationEuler = eulerd(orientation,'ZYX','frame');
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timeVector = (0:numSamples-1).'/fs;

figure(1)
plot(timeVector,orientationEuler)
legend('z-axis','y-axis','x-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation from Ideal IMU')

1 Functions — Alphabetical List

1-48



Repeat Experiment with Realistic IMU Sensor Model

Modify parameters of the IMU System object to approximate realistic IMU sensor data.
Reset the IMU and then call it with the same ground-truth acceleration, angular velocity,
and orientation. Use ecompass to fuse the IMU data and plot the results.

IMU.Accelerometer = accelparams( ...
    'MeasurementRange',20, ...
    'Resolution',0.0006, ...
    'ConstantBias',0.5, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',0.004, ...
    'BiasInstability',0.5);
IMU.Magnetometer = magparams( ...
    'MeasurementRange',200, ...
    'Resolution',0.01);
reset(IMU)

[accelerometerData,magnetometerData] = IMU(accelerationNED,angularVelocityNED,orientationNED);

orientation = ecompass(accelerometerData,magnetometerData);
orientationEuler = eulerd(orientation,'ZYX','frame');

figure(2)
plot(timeVector,orientationEuler)
legend('z-axis','y-axis','x-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation from Realistic IMU')
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Input Arguments
accelerometerReading — Accelerometer readings in sensor body coordinate
system (m/s2)
N-by-3 matrix

Accelerometer readings in sensor body coordinate system in m/s2, specified as an N-by-3
matrix. The columns of the matrix correspond to the x-, y-, and z-axes of the sensor body.
The rows in the matrix, N, correspond to individual samples. The accelerometer readings
are normalized before use in the function.
Data Types: single | double
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magnetometerReading — Magnetometer readings in sensor body coordinate
system (µT)
N-by-3 matrix

Magnetometer readings in sensor body coordinate system in µT, specified as an N-by-3
matrix. The columns of the matrix correspond to the x-, y-, and z-axes of the sensor body.
The rows in the matrix, N, correspond to individual samples. The magnetometer readings
are normalized before use in the function.
Data Types: single | double

orientationFormat — Format used to describe orientation
'quaternion' (default) | 'rotmat'

Format used to describe orientation, specified as 'quaternion' or 'rotmat'.
Data Types: char | string

Output Arguments
orientation — Orientation that rotates quantities from global coordinate
system to sensor body coordinate system
N-by-1 vector of quaternions (default) | 3-by-3-by-N array

Orientation that can rotate quantities from a global coordinate system to a body
coordinate system, returned as a vector of quaternions or an array. The size and type of
the orientation depends on the format used to describe orientation:

• 'quaternion' –– N-by-1 vector of quaternions with the same underlying data type as
the input

• 'rotmat' –– 3-by-3-by-N array the same data type as the input

Data Types: quaternion | single | double

Algorithms
The ecompass function returns a quaternion or rotation matrix that can rotate quantities
from a parent (NED for example) frame to a child (sensor) frame. For both output
orientation formats, the rotation operator is determined by computing the rotation matrix.
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The rotation matrix is first calculated with an intermediary:

R = (a × m) × a a × m a

and then normalized column-wise. a and m are the accelerometerReading input and
the magnetometerReading input, respectively.

To understand the rotation matrix calculation, consider an arbitrary point on the Earth
and its corresponding local NED frame. Assume a sensor body frame, [x,y,z], with the
same origin.

Recall that orientation of a sensor body is defined as the rotation operator (rotation
matrix or quaternion) required to rotate a quantity from a parent (NED) frame to a child
(sensor body) frame:

R pparent = pchild
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where

• R is a 3-by-3 rotation matrix, which can be interpreted as the orientation of the child
frame.

• pparent is a 3-by-1 vector in the parent frame.
• pchild is a 3-by-1 vector in the child frame.

For a stable sensor body, an accelerometer returns the acceleration due to gravity. If the
sensor body is perfectly aligned with the NED coordinate system, all acceleration due to
gravity is along the z-axis, and the accelerometer reads [0 0 1]. Consider the rotation
matrix required to rotate a quantity from the NED coordinate system to a quantity
indicated by the accelerometer.

r11 r21 r31
r12 r22 r32
r13 r23 r33

0
0
1

=
a1
a2
a3

The third column of the rotation matrix corresponds to the accelerometer reading:

r31
r32
r33

=
a1
a2
a3

A magnetometer reading points toward magnetic north and is in the N-D plane. Again,
consider a sensor body frame aligned with the NED coordinate system.
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By definition, the E-axis is perpendicular to the N-D plane, therefore N ⨯ D = E, within
some amplitude scaling. If the sensor body frame is aligned with NED, both the
acceleration vector from the accelerometer and the magnetic field vector from the
magnetometer lie in the N-D plane. Therefore m ⨯ a = y, again with some amplitude
scaling.

Consider the rotation matrix required to rotate NED to the child frame, [x y z].

r11 r21 r31
r12 r22 r32
r13 r23 r33

0
1
0

=
a1
a2
a3

×
m1
m2
m3

The second column of the rotation matrix corresponds to the cross product of the
accelerometer reading and the magnetometer reading:
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r21
r22
r23

=
a1
a2
a3

×
m1
m2
m3

By definition of a rotation matrix, column 1 is the cross product of columns 2 and 3:

r11
r12
r13

=
r21
r22
r23

×
r31
r32
r33

= a × m × a

Finally, the rotation matrix is normalized column-wise:

Ri j =
Ri j

∑
i = 1

3
Ri j

2
, ∀ j

Note The ecompass algorithm uses magnetic north, not true north, for the NED
coordinate system.

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-

Sensor-Fusion/tree/master/docs

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | imufilter
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edgeConstraints
Edge constraints in pose graph

Syntax
relPoses = edgeConstraints(poseGraph)
[relPoses,infoMatrices] = edgeConstraints(poseGraph)
[relPoses,infoMatrices] = edgeConstraints(poseGraph,edgeIDs)

Description
relPoses = edgeConstraints(poseGraph) lists all edge constraints in the specified
pose graph as a relative pose.

[relPoses,infoMatrices] = edgeConstraints(poseGraph) also returns the
information matrices for each edge. The information matrix is the inverse of the
covariance of the pose measurement.

[relPoses,infoMatrices] = edgeConstraints(poseGraph,edgeIDs) returns
edge constraints for the specified edge IDs.

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

edgeIDs — Edge IDs
vector of positive integers

Edge IDs, specified as a vector of positive integers.
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Output Arguments
relPoses — Relative poses measured between nodes
n-by-3 matrix | n-by-7 matrix

Relative poses measured between nodes, returned as an n-by-3 matrix or n-by-7 matrix.

For poseGraph (2-D), each row is an [x y theta] vector, which defines the relative xy-
position and orientation angle, theta, of a pose in the graph.

For poseGraph3D, each row is an [x y z qw qx qy qz] vector, which defines the
relative xyz-position and quaternion orientation, [qw qx qy qz], of a pose in the graph.

Note Many other sources for 3-D pose graphs, including .g2o formats, specify the
quaternion orientation in a different order, for example, [qx qy qz qw]. Check the
source of your pose graph data before adding nodes to your poseGraph3D object.

infoMatrices — Information matrices
n-by-6 matrix | n-by-21 matrix

Information matrices, specified in compact form as a n-by-6 or n-by-21 matrix, where n is
the number of poses in the pose graph.

Each row is a vector that contains the elements of the upper triangle of the square
information matrix. The information matrix is the inverse of the covariance of the pose
and represents the uncertainty of the measurement. If the pose vector is [x y theta],
the covariance is a 3-by-3 matrix of pairwise covariance calculations. Typically, the
uncertainty is determined by the sensor model.

For poseGraph (2-D), each information matrix is a six-element vector. The default is [1 0
0 1 0 1].

For poseGraph3D, each information matrix is a 21-element vector. The default is [1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1].
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code
generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
specifies an upper bound on the number of edges and nodes allowed in the pose graph
when generating code. This limit is only required when generating code.

See Also
Functions
addRelativePose | edges | findEdgeID | nodes | optimizePoseGraph |
removeEdges

Objects
lidarSLAM | poseGraph | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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edges
Edges in pose graph

Syntax
edges = edges(poseGraph)
edges = edges(poseGraph,edgeIDs)

Description
edges = edges(poseGraph) returns all edges in the specified pose graph as a list of
node ID pairs.

edges = edges(poseGraph,edgeIDs) returns edges corresponding to the specified
edge IDs.

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

edgeIDs — Edge IDs
vector of positive integers

Edge IDs, specified as a vector of positive integers.

Output Arguments
edges — Edges in pose graph
n-by-2 matrix
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Edges in pose graph, returned as n-by-2 matrix that lists the IDs of the two nodes that
each edge connects.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code
generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
specifies an upper bound on the number of edges and nodes allowed in the pose graph
when generating code. This limit is only required when generating code.

See Also
Functions
addRelativePose | edgeConstraints | findEdgeID | nodes | optimizePoseGraph
| removeEdges

Objects
lidarSLAM | poseGraph | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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eul2quat
Convert Euler angles to quaternion

Syntax
quat = eul2quat(eul)
quat = eul2quat(eul,sequence)

Description
quat = eul2quat(eul) converts a given set of Euler angles, eul, to the corresponding
quaternion, quat. The default order for Euler angle rotations is "ZYX".

quat = eul2quat(eul,sequence) converts a set of Euler angles into a quaternion.
The Euler angles are specified in the axis rotation sequence, sequence. The default order
for Euler angle rotations is "ZYX".

Examples

Convert Euler Angles to Quaternion

eul = [0 pi/2 0];
qZYX = eul2quat(eul)

qZYX = 1×4

    0.7071         0    0.7071         0
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Convert Euler Angles to Quaternion Using Default ZYZ Axis Order
eul = [pi/2 0 0];
qZYZ = eul2quat(eul,'ZYZ')

qZYZ = 1×4

    0.7071         0         0    0.7071

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion,
one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2eul | quaternion

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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eul2rotm
Convert Euler angles to rotation matrix

Syntax
rotm = eul2rotm(eul)
rotm = eul2rotm(eul,sequence)

Description
rotm = eul2rotm(eul) converts a set of Euler angles, eul, to the corresponding
rotation matrix, rotm. When using the rotation matrix, premultiply it with the coordinates
to be rotated (as opposed to postmultiplying). The default order for Euler angle rotations
is "ZYX".

rotm = eul2rotm(eul,sequence) converts Euler angles to a rotation matrix, rotm.
The Euler angles are specified in the axis rotation sequence, sequence. The default order
for Euler angle rotations is "ZYX".

Examples

Convert Euler Angles to Rotation Matrix
eul = [0 pi/2 0];
rotmZYX = eul2rotm(eul)

rotmZYX = 3×3

    0.0000         0    1.0000
         0    1.0000         0
   -1.0000         0    0.0000
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Convert Euler Angles to Rotation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
rotmZYZ = eul2rotm(eul,'ZYZ')

rotmZYZ = 3×3

    0.0000   -0.0000    1.0000
    1.0000    0.0000         0
   -0.0000    1.0000    0.0000

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix
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Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2eul

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a

 eul2rotm

1-67



eul2tform
Convert Euler angles to homogeneous transformation

Syntax
eul = eul2tform(eul)
tform = eul2tform(eul,sequence)

Description
eul = eul2tform(eul) converts a set of Euler angles, eul, into a homogeneous
transformation matrix, tform. When using the transformation matrix, premultiply it with
the coordinates to be transformed (as opposed to postmultiplying). The default order for
Euler angle rotations is "ZYX".

tform = eul2tform(eul,sequence) converts Euler angles to a homogeneous
transformation. The Euler angles are specified in the axis rotation sequence, sequence.
The default order for Euler angle rotations is "ZYX".

Examples

Convert Euler Angles to Homogeneous Transformation Matrix

eul = [0 pi/2 0];
tformZYX = eul2tform(eul)

tformZYX = 4×4

    0.0000         0    1.0000         0
         0    1.0000         0         0
   -1.0000         0    0.0000         0
         0         0         0    1.0000
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Convert Euler Angles to Homogeneous Transformation Matrix Using ZYZ Axis
Order

eul = [0 pi/2 pi/2];
tformZYZ = eul2tform(eul,'ZYZ')

tformZYZ = 4×4

    0.0000   -0.0000    1.0000         0
    1.0000    0.0000         0         0
   -0.0000    1.0000    0.0000         0
         0         0         0    1.0000

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char
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Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be
rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2eul

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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findEdgeID
Find edge ID of edge

Syntax
edgeID = findEdgeID(poseGraph,edge)

Description
edgeID = findEdgeID(poseGraph,edge) finds the edge ID for a specified edge.
Edges are defined by the IDs of the two nodes that connect them.

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

edge — Edge in pose graph
two-element vector

Edge in pose graph, specified as a two-element vector that lists the IDs of the two nodes
that the edge connects.

Output Arguments
edgeID — Edge ID
positive integer

Edge IDs, returned as a positive integer.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code
generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
specifies an upper bound on the number of edges and nodes allowed in the pose graph
when generating code. This limit is only required when generating code.

See Also
Functions
addRelativePose | edgeConstraints | edges | nodes | optimizePoseGraph |
removeEdges

Objects
lidarSLAM | poseGraph | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b

1 Functions — Alphabetical List

1-72



hom2cart
Convert homogeneous coordinates to Cartesian coordinates

Syntax
cart = hom2cart(hom)

Description
cart = hom2cart(hom) converts a set of homogeneous points to Cartesian coordinates.

Examples

Convert Homogeneous Points to 3-D Cartesian Points
h = [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5];
c = hom2cart(h)

c = 2×3

    0.5570    1.9150    0.3152
    1.0938    1.9298    1.9412

Input Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, specified as an n-by-k matrix, containing n points. k must be greater
than or equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]
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Output Arguments
cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, returned as an n-by-(k–1) matrix, containing n points. Each row of
cart represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.
Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cart2hom

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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insfilter
Create inertial navigation filter

Syntax
filter = insfilter
filter = insfilter('ReferenceFrame',RF)

Description
filter = insfilter returns an insfilterMARG inertial navigation filter object that
estimates pose based on accelerometer, gyroscope, GPS, and magnetometer
measurements. See insfilterMARG for more details.

filter = insfilter('ReferenceFrame',RF) returns an insfilterMARG inertial
navigation filter object that estimates pose relative to a reference frame specified by RF.
Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is
'NED'. See insfilterMARG for more details.

Examples

Create Default INS Filter

The default INS filter is the insfilterMARG object. Call insfilter with no input
arguments to create the default INS filter.

filter = insfilter

filter = 
  insfilterMARG with properties:

        IMUSampleRate: 100               Hz         
    ReferenceLocation: [0 0 0]           [deg deg m]
                State: [22x1 double]                
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      StateCovariance: [22x22 double]               

   Multiplicative Process Noise Variances
            GyroscopeNoise: [1e-09 1e-09 1e-09]       (rad/s)²
        AccelerometerNoise: [0.0001 0.0001 0.0001]    (m/s²)² 
        GyroscopeBiasNoise: [1e-10 1e-10 1e-10]       (rad/s)²
    AccelerometerBiasNoise: [0.0001 0.0001 0.0001]    (m/s²)² 

   Additive Process Noise Variances
    GeomagneticVectorNoise: [1e-06 1e-06 1e-06]    uT²
     MagnetometerBiasNoise: [0.1 0.1 0.1]          uT²

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | imufilter | insfilterAsync | insfilterErrorState |
insfilterMARG | insfilterNonholonomic

Introduced in R2018b

1 Functions — Alphabetical List

1-76



interpolate
Interpolate poses along path segment

Syntax
poses = interpolate(pathSeg)
poses = interpolate(pathSeg,lengths)
[poses,directions] = interpolate( ___ )

Description
poses = interpolate(pathSeg) interpolates along the path segment at the
transitions between motion types.

poses = interpolate(pathSeg,lengths) interpolates along the path segment at
the specified lengths along the path. Transitions between motion types are always
included.

[poses,directions] = interpolate( ___ ) also returns the direction of motion
along the path for each section as a vector of 1s (forward) and –1s (reverse) using the
previous inputs.

Examples

Interpolate Poses For Dubins Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];
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Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})

Interpolate poses along the path. Get a pose every 0.2 meters, including the transitions
between turns.

length = pathSegObj{1}.Length;
poses = interpolate(pathSegObj{1},0:0.2:length)
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poses = 32×3

         0         0         0
    0.1987   -0.0199    6.0832
    0.3894   -0.0789    5.8832
    0.5646   -0.1747    5.6832
    0.7174   -0.3033    5.4832
    0.8309   -0.4436    5.3024
    0.8418   -0.4595    5.3216
    0.9718   -0.6110    5.5216
    1.1293   -0.7337    5.7216
    1.3081   -0.8226    5.9216
      ⋮

Use the quiver function to plot these poses.

quiver(poses(:,1),poses(:,2),cos(poses(:,3)),sin(poses(:,3)),0.5)
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Error using matlab.internal.editor.figure.SerializedFigureState/serialize
Error while evaluating Figure SizeChangedFcn.

Input Arguments
pathSeg — Path segment
dubinsPathSegment object | reedsSheppPathSegment object

Path segment, specified as a dubinsPathSegment or reedsSheppPathSegment object.

lengths — Lengths along path to interpolate at
positive numeric vector
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Lengths along path to interpolate at, specified as a positive numeric vector. For example,
specify [0:0.1:pathSegObj{1}.Length] to interpolate at every 0.1 meters along the
path. Transitions between motion types are always included.

Output Arguments
poses — Interpolated poses
[x, y, Θ] matrix

This property is read-only.

Interpolated poses along the path segment, specified as an [x, y, Θ] matrix. Each row of
the matrix corresponds to a different interpolated pose along the path.

x and y are in meters. Θ is in radians.

directions — Directions of motion
vector of 1s (forward) and –1s (reverse)

Directions of motion for each segment of the interpolated path, specified as a vector of 1s
(forward) and –1s (reverse).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
connect | show

Objects
dubinsConnection | dubinsPathSegment | reedsSheppConnection |
reedsSheppPathSegment
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copy
Create copy of path object

Syntax
path2 = copy(path1)

Description
path2 = copy(path1) creates a copy of the path object, path2, from the path object,
path1.

Input Arguments
path1 — path object
navPath object

Path object, specified as a navPath object.
Data Types: object

Output Arguments
path2 — path object
navPath object

Path object, returned as a navPath object.
Data Types: object

See Also
navPath

 copy
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magcal
Magnetometer calibration coefficients

Syntax
[A,b,expmfs] = magcal(D)
[A,b,expmfs] = magcal(D,fitkind)

Description
[A,b,expmfs] = magcal(D) returns the coefficients needed to correct uncalibrated
magnetometer data D.

To produce the calibrated magnetometer data C, use equation C = (D-b)*A. The
calibrated data C lies on a sphere of radius expmfs.

[A,b,expmfs] = magcal(D,fitkind) constrains the matrix A to be the type specified
by fitkind. Use this syntax when only the soft- or hard-iron effect needs to be corrected.

Examples

Correct Data Lying on Ellipsoid

Generate uncalibrated magnetometer data lying on an ellipsoid.

c = [-50; 20; 100]; % ellipsoid center
r = [30; 20; 50]; % semiaxis radii

[x,y,z] = ellipsoid(c(1),c(2),c(3),r(1),r(2),r(3),20);
D = [x(:),y(:),z(:)];

Correct the magnetometer data so that it lies on a sphere. The option for the calibration is
set by default to 'auto'.
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[A,b,expmfs] = magcal(D); % calibration coefficients
expmfs % Dipaly expected  magnetic field strength in uT

expmfs = 31.0723

C = (D-b)*A; % calibrated data

Visualize the uncalibrated and calibrated magnetometer data.

figure(1)
plot3(x(:),y(:),z(:),'LineStyle','none','Marker','X','MarkerSize',8)
hold on
grid(gca,'on')
plot3(C(:,1),C(:,2),C(:,3),'LineStyle','none','Marker', ...
            'o','MarkerSize',8,'MarkerFaceColor','r') 
axis equal
xlabel('uT')
ylabel('uT')
zlabel('uT')
legend('Uncalibrated Samples', 'Calibrated Samples','Location', 'southoutside')
title("Uncalibrated vs Calibrated" + newline + "Magnetometer Measurements")
hold off
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Input Arguments
D — Raw magnetometer data
N-by-3 matrix (default)

Input matrix of raw magnetometer data, specified as a N-by-3 matrix. Each column of the
matrix corresponds to the magnetometer measurements in the first, second and third
axes, respectively. Each row of the matrix corresponds to a single three-axis
measurement.
Data Types: single | double
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fitkind — Matrix output type
'auto' (default) | 'eye' | 'diag' | 'sym'

Matrix type for output A. The matrix type of A can be constrained to:

• 'eye' – identity matrix
• 'diag' – diagonal
• 'sym' – symmetric
• 'auto' – whichever of the previous options gives the best fit

Output Arguments
A — Correction matrix for soft-iron effect
3-by-3 matrix

Correction matrix for the soft-iron effect, returned as a 3-by-3 matrix.

b — Correction vector for hard-iron effect
3-by-1 vector

Correction vector for the hard-iron effect, returned as a 3-by-1 array.

expmfs — Expected magnetic field strength
scalar

Expected magnetic filed strength, returned as a scalar.

More About

Soft- and Hard-Iron Effects
Because a magnetometer usually rotates through a full range of 3-D rotation, the ideal
measurements from a magnetometer should form a perfect sphere centered at the origin
if the magnetic field is unperturbed. However, due to distorting magnetic fields from the
sensor circuit board and the surrounding environment, the spherical magnetic
measurements can be perturbed. In general, two effects exist.
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1 The soft-iron effect is described as the distortion of the ellipsoid from a sphere and
the tilt of the ellipsoid, as shown in the left figure. This effect is caused by
disturbances that influence the magnetic field but may not generate their own
magnetic field. For example, metals such as nickel and iron can cause this kind of
distortion.

2 The hard-iron effect is described as the offset of the ellipsoid center from the origin.
This effect is produced by materials that exhibit a constant, additive field to the
earth's magnetic field. This constant additive offset is in addition to the soft-iron
effect as shown in the figure on the right.

The underlying algorithm in magcal determines the best-fit ellipsoid to the raw sensor
readings and attempts to "invert" the ellipsoid to produce a sphere. The goal is to
generate a correction matrix A to account for the soft-iron effect and a vector b to account
for the hard-iron effect. The three output options, 'eye', 'diag' and 'sym' correspond to
three parameter-solving algorithms, and the 'auto' option chooses among these three
options to give the best fit.

References
[1] Ozyagcilar, T. "Calibrating an eCompass in the Presence of Hard and Soft-iron

Interference." Freescale Semiconductor Ltd. 1992, pp. 1-17.

See Also
Classes
magparams

 magcal
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System Objects
imuSensor

Introduced in R2019a

1 Functions — Alphabetical List

1-90



matchScans
Estimate pose between two laser scans

Syntax
pose = matchScans(currScan,refScan)
pose = matchScans(currRanges,currAngles,refRanges,refAngles)
[pose,stats] = matchScans( ___ )
[ ___ ] = matchScans( ___ ,Name,Value)

Description
pose = matchScans(currScan,refScan) finds the relative pose between a reference
lidarScan and a current lidarScan object using the normal distributions transform
(NDT).

pose = matchScans(currRanges,currAngles,refRanges,refAngles) finds the
relative pose between two laser scans specified as ranges and angles.

[pose,stats] = matchScans( ___ ) returns additional statistics about the scan
match result using the previous input arguments.

[ ___ ] = matchScans( ___ ,Name,Value) specifies additional options specified by
one or more Name,Value pair arguments.

Examples

Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300); 
refScan = lidarScan(refRanges,refAngles);
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Using the transformScan function, generate a second lidar scan at an x,y offset of
(0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between
them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan into
the frame of the first scan using the relative pose difference. Plot both the original scans
and the aligned scans.

currScan2 = transformScan(currScan,pose);

subplot(2,1,1);
hold on
plot(currScan)
plot(refScan)
title('Original Scans')
hold off

subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off
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Match Laser Scans

This example uses the 'fminunc' solver algorithm to perform scan matching. This solver
algorithm requires an Optimization Toolbox™ license.

Specify a reference laser scan as ranges and angles.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);

Using the transformScan function, generate a second laser scan at an x,y offset of
(0.5,0.2).

 matchScans
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[currRanges,currAngles] = transformScan(refRanges,refAngles,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between
them.

pose = matchScans(currRanges,currAngles,refRanges,refAngles,'SolverAlgorithm','fminunc');

Improve the estimate by giving an initial pose estimate.

pose = matchScans(currRanges,currAngles,refRanges,refAngles,...
                  'SolverAlgorithm','fminunc','InitialPose',[-0.4 -0.1 0]);

Use the transformScan function to align the scans by transforming the second scan into
the frame of the first scan using the relative pose difference. Plot both the original scans
and the aligned scans.

[currRanges2,currAngles2] = transformScan(currRanges,currAngles,pose);

[x1, y1] = pol2cart(refAngles,refRanges);
[x2, y2] = pol2cart(currAngles,currRanges);
[x3, y3] = pol2cart(currAngles2,currRanges2);

subplot(1,2,1)
plot(x1,y1,'o',x2,y2,'*r')
title('Original Scans')
subplot(1,2,2)
plot(x1,y1,'o',x3,y3,'*r')
title('Aligned Scans')
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Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

 matchScans
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Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

currRanges — Current laser scan ranges
vector in meters

Current laser scan ranges, specified as a vector. Ranges are given as distances to objects
measured from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

currAngles — Current laser scan angles
vector in radians

Current laser scan angles, specified as a vector in radians. Angles are given as the
orientations of the corresponding range measurements.

refRanges — Reference laser scan ranges
vector in meters

Reference laser scan ranges, specified as a vector in meters. Ranges are given as
distances to objects measured from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

refAngles — Reference laser scan angles
vector in radians

Reference laser scan angles, specified as a vector in radians. Angles are given as the
orientations of the corresponding range measurements.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: "InitialPose",[1 1 pi/2]

SolverAlgorithm — Optimization algorithm
"trust-region" (default) | "fminunc"
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Optimization algorithm, specified as either "trust-region" or "fminunc". Using
"fminunc" requires an Optimization Toolbox™ license.

InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

Initial guess of the current pose relative to the reference laser scan, specified as the
comma-separated pair consisting of "InitialPose" and an [x y theta] vector. [x y]
is the translation in meters and theta is the rotation in radians.

CellSize — Length of cell side
1 (default) | numeric scalar

Length of a cell side in meters, specified as the comma-separated pair consisting of
"CellSize" and a numeric scalar. matchScans uses the cell size to discretize the space
for the NDT algorithm.

Tuning the cell size is important for proper use of the NDT algorithm. The optimal cell
size depends on the input scans and the environment of your robot. Larger cell sizes can
lead to less accurate matching with poorly sampled areas. Smaller cell sizes require more
memory and less variation between subsequent scans. Sensor noise influences the
algorithm with smaller cell sizes as well. Choosing a proper cell size depends on the scale
of your environment and the input data.

MaxIterations — Maximum number of iterations
400 (default) | scalar integer

Maximum number of iterations, specified as the comma-separated pair consisting of
"MaxIterations" and a scalar integer. A larger number of iterations results in more
accurate pose estimates, but at the expense of longer execution time.

ScoreTolerance — Lower bounds on the change in NDT score
1e-6 (default) | numeric scalar

Lower bound on the change in NDT score, specified as the comma-separated pair
consisting of "ScoreTolerance" and a numeric scalar. The NDT score is stored in the
Score field of the output stats structure. Between iterations, if the score changes by
less than this tolerance, the algorithm converges to a solution. A smaller tolerance results
in more accurate pose estimates, but requires a longer execution time.
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Output Arguments
pose — Pose of current scan
[x y theta]

Pose of current scan relative to the reference scan, returned as [x y theta], where [x
y] is the translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following fields:

• Score — Numeric scalar representing the NDT score while performing scan
matching. This score is an estimate of the likelihood that the transformed current scan
matches the reference scan. Score is always nonnegative. Larger scores indicate a
better match.

• Hessian — 3-by-3 matrix representing the Hessian of the NDT cost function at the
given pose solution. The Hessian is used as an indicator of the uncertainty associated
with the pose estimate.

References
[1] Biber, P., and W. Strasser. "The Normal Distributions Transform: A New Approach to

Laser Scan Matching." Intelligent Robots and Systems Proceedings. 2003.

[2] Magnusson, Martin. "The Three-Dimensional Normal-Distributions Transform -- an
Efficient Representation for Registration, Surface Analysis, and Loop Detection."
PhD Dissertation. Örebro University, School of Science and Technology, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is supported for the default SolverAlgorithm, "trust-region". You
cannot use the "fminunc" algorithm in code generation.
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See Also
Functions
lidarScan | transformScan

Classes
monteCarloLocalization | occupancyMap

Topics
“Estimate Robot Pose with Scan Matching”

Introduced in R2019b
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matchScansGrid
Estimate pose between two lidar scans using grid-based search

Syntax
pose = matchScansGrid(currScan,refScan)
[pose,stats] = matchScansGrid( ___ )
[ ___ ] = matchScansGrid( ___ ,Name,Value)

Description
pose = matchScansGrid(currScan,refScan) finds the relative pose between a
reference lidarScan and a current lidarScan object using a grid-based search.
matchScansGrid converts lidar scan pairs into probabilistic grids and finds the pose
between the two scans by correlating their grids. The function uses a branch-and-bound
strategy to speed up computation over large discretized search windows.

[pose,stats] = matchScansGrid( ___ ) returns additional statistics about the scan
match result using the previous input arguments.

[ ___ ] = matchScansGrid( ___ ,Name,Value) specifies options using one or more
Name,Value pair arguments. For example, 'InitialPose',[1 1 pi/2] specifies an
initial pose estimate for scan matching.

Examples

Match Scans Using Grid-Based Search

Perform scan matching using a grid-based search to estimate the pose between two laser
scans. Generate a probabilistic grid from the scans and estimate the pose difference from
those grids.

Load the laser scan data. These two scans are from an actual lidar sensor with changes in
the robot pose and are stored as lidarScan objects.
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load laserScans.mat scan scan2
plot(scan)
hold on
plot(scan2)
hold off

Use matchScansGrid to estimate the pose between the two scans.

relPose = matchScansGrid(scan2,scan);

Using the estimated pose, transform the current scan back to the reference scan. The
scans overlap closely when you plot them together.

scan2Tformed = transformScan(scan2,relPose);
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plot(scan)
hold on
plot(scan2Tformed)
hold off

Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.
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Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'InitialPose',[1 1 pi/2]

InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

Initial guess of the current pose relative to the reference laser scan, specified as the
comma-separated pair consisting of 'InitialPose' and an [x y theta] vector. [x y]
is the translation in meters and theta is the rotation in radians.

Resolution — Grid cells per meter
20 (default) | positive integer

Grid cells per meter, specified as the comma-separated pair consisting of 'Resolution'
and a positive integer. The accuracy of the scan matching result is accurate up to the grid
cell size.

MaxRange — Maximum range of lidar sensor
8 (default) | positive scalar

Maximum range of lidar sensor, specified as the comma-separated pair consisting of
'MaxRange' and a positive scalar.

TranslationSearchRange — Search range for translation
[4 4] (default) | [x y] vector

Search range for translation, specified as the comma-separated pair consisting of
'TranslationSearchRange' and an [x y] vector. These values define the search
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window in meters around the initial translation estimate given in InitialPose. If the
InitialPose is given as [x0 y0], then the search window coordinates are [x0-x
x0+x] and [y0-y y0+y]. This parameter is used only when InitialPose is specified.

RotationSearchRange — Search range for rotation
pi/4 (default) | positive scalar

Search range for rotation, specified as the comma-separated pair consisting of
'RotationSearchRange' and a positive scalar. This value defines the search window in
radians around the initial rotation estimate given in InitialPose. If the InitialPose
rotation is given as th0, then the search window is [th0-a th0+a], where a is the
rotation search range. This parameter is used only when InitialPose is specified.

Output Arguments
pose — Pose of current scan
[x y theta] vector

Pose of current scan relative to the reference scan, returned as an [x y theta] vector,
where [x y] is the translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following field:

• Score — Numeric scalar representing the score while performing scan matching. This
score is an estimate of the likelihood that the transformed current scan matches the
reference scan. Score is always nonnegative. Larger scores indicate a better match,
but values vary depending on the lidar data used.

References
[1] Hess, Wolfgang, Damon Kohler, Holger Rapp, and Daniel Andor. "Real-Time Loop

Closure in 2D LIDAR SLAM." 2016 IEEE International Conference on Robotics
and Automation (ICRA). 2016.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
lidarScan | matchScans | transformScan

Classes
lidarSLAM

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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nodes
Poses of nodes in pose graph

Syntax
nodes = nodes(poseGraph)
nodes = nodes(poseGraph,nodeIDs)

Description
nodes = nodes(poseGraph) lists all poses in the specified pose graph.

nodes = nodes(poseGraph,nodeIDs) lists the poses with the specified node IDs.

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

nodeIDs — Node IDs
positive integer | vector of positive integers

Node IDs, specified as a positive integer or vector of positive integers. Each node added
gets an ID sequentially in the graph.

Output Arguments
nodes — Pose of each node
n-by-3 matrix | n-by-7 matrix

Pose of each node, specified as an n-by-3 or n-by-7 matrix. These poses are given in global
coordinates for the whole pose graph.
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For poseGraph (2-D), each row is an [x y theta] vector, which defines the relative xy-
position and orientation angle, theta, of a pose in the graph.

For poseGraph3D, each row is an [x y z qw qx qy qz] vector, which defines the
relative xyz-position and quaternion orientation, [qw qx qy qz], of a pose in the graph.

Note Many other sources for 3-D pose graphs, including .g2o formats, specify the
quaternion orientation in a different order, for example, [qx qy qz qw]. Check the
source of your pose graph data before adding nodes to your poseGraph3D object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code
generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
specifies an upper bound on the number of edges and nodes allowed in the pose graph
when generating code. This limit is only required when generating code.

See Also
Functions
addRelativePose | edgeConstraints | edges | findEdgeID | optimizePoseGraph
| removeEdges

Objects
lidarSLAM | poseGraph | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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Introduced in R2019b
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optimizePoseGraph
Optimize nodes in pose graph

Syntax
updatedGraph = optimizePoseGraph(poseGraph)
updatedGraph = optimizePoseGraph(poseGraph,solver)
[updatedGraph,solutionInfo] = optimizePoseGraph( ___ )
[ ___ ] = optimizePoseGraph( ___ ,Name,Value)

Description
updatedGraph = optimizePoseGraph(poseGraph) adjusts the poses based on their
edge constraints defined in the specified graph to improve the overall graph. You optimize
either a 2-D or 3-D pose graph. The returned pose graph has the same topology with
updated nodes.

updatedGraph = optimizePoseGraph(poseGraph,solver)specifies the solver type
for optimizing the pose graph.

[updatedGraph,solutionInfo] = optimizePoseGraph( ___ ) returns additional
statistics about the optimization process in solutionInfo using any of the previous
syntaxes.

[ ___ ] = optimizePoseGraph( ___ ,Name,Value) specifies additional options using
one or more Name,Value pairs. For example, 'MaxIterations',1000 increases the
maximum number of iterations to 1000.

Examples
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Optimize a 3-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in
this example is taken from the MIT Dataset and was generated using information
extracted from a parking garage.

Load the pose graph from the MIT dataset. Inspect the poseGraph3D object to view the
number of nodes and loop closures.

load parking-garage-posegraph.mat pg
disp(pg);

  poseGraph3D with properties:

               NumNodes: 1661
               NumEdges: 6275
    NumLoopClosureEdges: 4615
     LoopClosureEdgeIDs: [1x4615 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

title('Original Pose Graph')
show(pg,'IDs','off');
view(-30,45)
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Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop
closures. Plot the optimized pose graph to see the adjustment of the nodes with loop
closures.

updatedPG = optimizePoseGraph(pg);
figure
title('Updated Pose Graph')
show(updatedPG,'IDs','off');
view(-30,45)
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Input Arguments
poseGraph — 2-D or 3-D pose graph
poseGraph object | poseGraph3D object

2-D or 3-D pose graph, specified as a poseGraph or poseGraph3D object.

solver — Pose graph solver
"builtin-trust-region" (default) | "g2o-levenberg-marquardt"

Pose graph solver, specified as either "builtin-trust-region" or "g2o-levenberg-
marquardt". To tune either solver, use the name-value pair arguments for that solver.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxTime', 300

Note Depending on the solver input, the function supports different name-value pairs.

If the solver input is set to "builtin-trust-region":

MaxTime — Maximum time allowed
500 (default) | positive numeric scalar

Maximum time allowed, specified as the comma-separated pair consisting of 'MaxTime'
and a positive numeric scalar in seconds. The optimizer exits after it exceeds this time.

GradientTolerance — Lower bound on norm of gradient
0.5e-8 (default) | scalar

Lower bound on the norm of the gradient, specified as the comma-separated pair
consisting of 'GradientTolerance' and a scalar. The norm of the gradient is calculated
based on the cost function of the optimization. If the norm falls below this value, the
optimizer exits.

FunctionTolerance — Lower bound on change in cost function
1e-8 (default) | scalar

Lower bound on the change in the cost function, specified as the comma-separated pair
consisting of 'FunctionTolerance' and a scalar. If the cost function change falls below
this value between optimization steps, the optimizer exits.

StepTolerance — Lower bound on step size
1e-12 (default) | scalar

Lower bound on the step size, specified as the comma-separated pair consisting of
'StepTolerance' and a scalar. If the norm of the optimization step falls below this
value, the optimizer exits.
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InitialTrustRegionRadius — Initial trust region radius
100 (default) | scalar

Initial trust region radius, specified as a scalar.

VerboseOutput — Display intermediate iteration information
'off' (default) | 'on'

Display intermediate iteration information on the MATLAB command line, specified as the
comma-separated pair consisting of 'VerboseOutput' and either 'off' or 'on'.

LoopClosuresToIgnore — IDs of loop closure edges in pose graph
vector

IDs of loop closure edges in poseGraph, specified as the comma-separated pair
consisting of 'LoopClosuresToIgnore' and a vector. To get edge IDs from the pose
graph, use findEdgeID.

FirstNodePose — Pose of first node
[0 0 0] or [0 0 0 1 0 0 0] (default) | [x y theta] | [x y z qw qx qy qz]

Pose of the first node in poseGraph, specified as the comma-separated pair consisting of
'FirstNodePose' and a pose vector.

For poseGraph (2-D), the pose is an [x y theta] vector, which defines the relative xy-
position and orientation angle, theta.

For poseGraph3D, the pose is an [x y z qw qx qy qz] vector, which defines the
relative xyz-position and quaternion orientation, [qw qx qy qz].

Note Many other sources for 3-D pose graphs, including .g2o formats, specify the
quaternion orientation in a different order, for example, [qx qy qz qw]. Check the
source of your pose graph data before adding nodes to your poseGraph3D object.

If the solver input is set to "g2o-levenberg-marquardt":

MaxIterations — Maximum number of iterations
300 (default) | positive integer
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Maximum number of iterations, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer. The optimizer exits after it exceeds this
number of iterations.

MaxTime — Maximum time allowed
500 (default) | positive numeric scalar

Maximum time allowed, specified as the comma-separated pair consisting of 'MaxTime'
and a positive numeric scalar in seconds. The optimizer exits after it exceeds this time.

FunctionTolerance — Lower bound on change in cost function
1e-8 (default) | scalar

Lower bound on the change in the cost function, specified as the comma-separated pair
consisting of 'FunctionTolerance' and a scalar. If the cost function change falls below
this value between optimization steps, the optimizer exits.

VerboseOutput — Display intermediate iteration information
'off' (default) | 'on'

Display intermediate iteration information on the MATLAB command line, specified as the
comma-separated pair consisting of 'VerboseOutput' and either 'off' or 'on'.

LoopClosuresToIgnore — IDs of loop closure edges in pose graph
vector

IDs of loop closure edges in poseGraph, specified as the comma-separated pair
consisting of 'LoopClosuresToIgnore' and a vector. To get edge IDs from the pose
graph, use findEdgeID.

FirstNodePose — Pose of first node
[0 0 0] or [0 0 0 1 0 0 0] (default) | [x y theta] | [x y z qw qx qy qz]

Pose of the first node in poseGraph, specified as the comma-separated pair consisting of
'FirstNodePose' and a pose vector.

For poseGraph (2-D), the pose is an [x y theta] vector, which defines the relative xy-
position and orientation angle, theta.

For poseGraph3D, the pose is an [x y z qw qx qy qz] vector, which defines the
relative xyz-position and quaternion orientation, [qw qx qy qz].
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Note Many other sources for 3-D pose graphs, including .g2o formats, specify the
quaternion orientation in a different order, for example, [qx qy qz qw]. Check the
source of your pose graph data before adding nodes to your poseGraph3D object.

Output Arguments
updatedGraph — Optimized 2-D or 3-D pose graph
poseGraph object | poseGraph3D object

Optimized 2-D or 3-D pose graph, returned as a poseGraph or poseGraph3D object.

solutionInfo — Statistics of optimization process
structure

Statistics of optimization process, returned as a structure with these fields:

• Iterations — Number of iterations used in optimization.
• ResidualError — Value of cost function when optimizer exits.
• Exit Flag — Exit condition for optimizer:

• 1 — Local minimum found.
• 2 — Maximum number of iterations reached. See MaxIterations name-value pair

argument.
• 3 — Algorithm timed out during operation.
• 4 — Minimum step size. The step size is below the StepTolerance name-value

pair argument.
• 5 — The change in error is below the minimum.
• 8 — Trust region radius is below the minimum set in

InitialTrustRegionRadius.

References
[1] Grisetti, G., R. Kummerle, C. Stachniss, and W. Burgard. "A Tutorial on Graph-Based

SLAM." IEEE Intelligent Transportation Systems Magazine. Vol. 2, No. 4, 2010,
pp. 31–43. doi:10.1109/mits.2010.939925.

[2] Carlone, Luca, Roberto Tron, Kostas Daniilidis, and Frank Dellaert. "Initialization
Techniques for 3D SLAM: a Survey on Rotation Estimation and its Use in Pose
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Graph Optimization." 2015 IEEE International Conference on Robotics and
Automation (ICRA). 2015, pp. 4597–4604.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• Use this syntax when constructing poseGraph or poseGraph3D objects for code
generation:

poseGraph =
poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when
generating code. This limit is only required when generating code.

• The "g2o-levenberg-marquardt" solver input argument is not supported for
code generation.

See Also
Functions
addRelativePose | edgeConstraints | edges | findEdgeID | nodes | removeEdges

Objects
lidarSLAM | poseGraph | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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plotTransforms
Plot 3-D transforms from translations and rotations

Syntax
ax = plotTransforms(translations,rotations)
ax = plotTransforms(translations,rotations,Name,Value)

Description
ax = plotTransforms(translations,rotations) draws transform frames in a 3-D
figure window using the specified translations and rotations. The z-axis always points
upward.

ax = plotTransforms(translations,rotations,Name,Value) specifies
additional options using name-value pair arguments. Specify multiple name-value pairs to
set multiple options.

Input Arguments
translations — xyz-positions
[x y z] vector | matrix of [x y z] vectors

xyz-positions specified as a vector or matrix of [x y z] vectors. Each row represents a
new frame to plot with a corresponding orientation in rotations.
Example: [1 1 1; 2 2 2]

rotations — Rotations of xyz-positions
quaternion array | matrix of [w x y z] quaternion vectors

Rotations of xyz-positions specified as a quaternion array or n-by-4 matrix of [w x y
z] quaternion vectors. Each element of the array or each row of the matrix represents
the rotation of the xyz-positions specified in translations.
Example: [1 1 1 0; 1 3 5 0]
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FrameSize',5

FrameSize — Size of frames and attached meshes
positive numeric scalar

Size of frame and attached meshes, specified as positive numeric scalar.

InertialZDirection — Direction of positive z-axis of inertial frame
"up" (default) | "down"

Direction of the positive z-axis of inertial frame, specified as either "up" or "down". In
the plot, the positive z-axis always points up.

MeshFilePath — File path of mesh file attached to frames
character vector | string scalar

File path of mesh file attached to frames, specified as either a character vector or string
scalar. The mesh is attached to each plotted frame at the specified position and
orientation. Provided .stl are

• "fixedwing.stl"
• "multirotor.stl"
• "groundvehicle.stl"

Example: 'fixedwing.stl'

MeshColor — Color of attached mesh
"red" (default) | RGB triplet | string scalar

Color of attached mesh, specified as an RGB triple or string scalar.
Example: [0 0 1] or "green"

Parent — Axes used to plot transforms
Axes object | UIAxes object
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Axes used to plot the pose graph, specified as the comma-separated pair consisting of
'Parent' and either an Axes or UIAxes object. See axes or uiaxes.

Output Arguments
ax — Axes used to plot transforms
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of
'Parent' and either an Axes or UIAxesobject. See axes or uiaxes.

See Also
eul2quat | hom2cart | quaternion | rotm2quat | tform2quat

Introduced in R2018b
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quat2axang
Convert quaternion to axis-angle rotation

Syntax
axang = quat2axang(quat)

Description
axang = quat2axang(quat) converts a quaternion, quat, to the equivalent axis-angle
rotation, axang.

Examples

Convert Quaternion to Axis-Angle Rotation

quat = [0.7071 0.7071 0 0]; 
axang = quat2axang(quat)

axang = 1×4

    1.0000         0         0    1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects
containing n quaternions. If the input is a matrix, each row is a quaternion vector of the
form q = [w x y z], with w as the scalar number.
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Example: [0.7071 0.7071 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2quat | quaternion

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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quat2eul
Convert quaternion to Euler angles

Syntax
eul = quat2eul(quat)
eul = quat2eul(quat,sequence)

Description
eul = quat2eul(quat) converts a quaternion rotation, quat, to the corresponding
Euler angles, eul. The default order for Euler angle rotations is "ZYX".

eul = quat2eul(quat,sequence) converts a quaternion into Euler angles. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler
angle rotations is "ZYX".

Examples

Convert Quaternion to Euler Angles

quat = [0.7071 0.7071 0 0];
eulZYX = quat2eul(quat)

eulZYX = 1×3

         0         0    1.5708
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Convert Quaternion to Euler Angles Using ZYZ Axis Order

quat = [0.7071 0.7071 0 0];
eulZYZ = quat2eul(quat,'ZYZ')

eulZYZ = 1×3

    1.5708   -1.5708   -1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects
containing n quaternions. If the input is a matrix, each row is a quaternion vector of the
form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
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Example: [0 0 1.5708]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2quat | quaternion

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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quat2rotm
Convert quaternion to rotation matrix

Syntax
rotm = quat2rotm(quat)

Description
rotm = quat2rotm(quat) converts a quaternion quat to an orthonormal rotation
matrix, rotm. When using the rotation matrix, premultiply it with the coordinates to be
rotated (as opposed to postmultiplying).

Examples

Convert Quaternion to Rotation Matrix

quat = [0.7071 0.7071 0 0];
rotm = quat2rotm(quat)

rotm = 3×3

    1.0000         0         0
         0   -0.0000   -1.0000
         0    1.0000   -0.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

1 Functions — Alphabetical List

1-126



Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects
containing n quaternions. If the input is a matrix, each row is a quaternion vector of the
form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion | rotm2quat

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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quat2tform
Convert quaternion to homogeneous transformation

Syntax
tform = quat2tform(quat)

Description
tform = quat2tform(quat) converts a quaternion, quat, to a homogeneous
transformation matrix, tform. When using the transformation matrix, premultiply it with
the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Quaternion to Homogeneous Transformation

quat = [0.7071 0.7071 0 0];
tform = quat2tform(quat)

tform = 4×4

    1.0000         0         0         0
         0   -0.0000   -1.0000         0
         0    1.0000   -0.0000         0
         0         0         0    1.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects
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Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects
containing n quaternions. If the input is a matrix, each row is a quaternion vector of the
form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be
rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion | tform2quat

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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readBinaryOccupancyGrid
Read binary occupancy grid

Syntax
map = readBinaryOccupancyGrid(msg)
map = readBinaryOccupancyGrid(msg,thresh)
map = readBinaryOccupancyGrid(msg,thresh,val)

Description
map = readBinaryOccupancyGrid(msg) returns a binaryOccupancyMap object by
reading the data inside a ROS message, msg, which must be a 'nav_msgs/
OccupancyGrid' message. All message data values greater than or equal to the
occupancy threshold are set to occupied, 1, in the map. All other values, including
unknown values (-1) are set to unoccupied, 0, in the map.

map = readBinaryOccupancyGrid(msg,thresh) specifies a threshold, thresh, for
occupied values. All values greater than or equal to the threshold are set to occupied, 1.
All other values are set to unoccupied, 0.

map = readBinaryOccupancyGrid(msg,thresh,val) specifies a value to set for
unknown values (-1 ). By default, all unknown values are set to unoccupied, 0.

Examples

Read Binary Occupancy Data from ROS Message

Create a occupancy grid message and populate it with data.

msg = rosmessage('nav_msgs/OccupancyGrid');
msg.Info.Height = 10; 
msg.Info.Width = 10; 
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msg.Info.Resolution = 0.1; 
msg.Data = 100*rand(100,1);

Read data from message. Show the map.

map = readBinaryOccupancyGrid(msg);
show(map)

Read Binary Occupancy Data from ROS Message Using Threshold and Unknown
Value Replacement

Create a occupancy grid message and populate it with data.

 readBinaryOccupancyGrid
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msg = rosmessage('nav_msgs/OccupancyGrid');
msg.Info.Height = 10; 
msg.Info.Width = 10; 
msg.Info.Resolution = 0.1; 
msg.Data = 100*rand(100,1);

Read data from message. Specify the threshold value and what unknown values should be
set as. Show the map.

map = readBinaryOccupancyGrid(msg,65,1);
show(map)
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Read Binary Occupancy Data from ROS Message

Create a occupancy grid message and populate it with data.

msg = rosmessage('nav_msgs/OccupancyGrid');
msg.Info.Height = 10; 
msg.Info.Width = 10; 
msg.Info.Resolution = 0.1; 
msg.Data = 100*rand(100,1);

Read data from message. Show the map.

map = readBinaryOccupancyGrid(msg);
show(map)
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Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object
handle.

thresh — Threshold for occupied values
50 (default) | scalar

Threshold for occupied values, specified as a scalar. Any value greater than or equal to
the threshold is set to occupied, 1. All other values are set to unoccupied, 0.
Data Types: double

val — Value to replace unknown values
0 (default) | 1

Value to replace unknown values, specified as either 0 or 1. Unknown message values
(-1) are set to the given value.
Data Types: double | logical

Output Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

Binary occupancy grid, returned as a binaryOccupancyMap object handle. map is
converted from a 'nav_msgs/OccupancyGrid' message on the ROS network. It is an
object with a grid of binary values, where 1 indicates an occupied location and 0
indications an unoccupied location.

See Also
binaryOccupancyMap | controllerVFH | occupancyMap

Introduced in R2015a
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readOccupancyGrid
Read occupancy grid message

Syntax
map = readOccupancyGrid(msg)

Description
map = readOccupancyGrid(msg) returns an occupancyMap object by reading the
data inside a ROS message, msg, which must be a 'nav_msgs/OccupancyGrid'
message. All message data values are converted to probabilities from 0 to 1. The
unknown values (-1) in the message are set as 0.5 in the map.

Examples

Read An OccupancyGrid Message from ROS

Create a nav_msgs/OccupancyGrid ROS message.

msg = rosmessage('nav_msgs/OccupancyGrid');

Populate the ROS occupancy grid message with data.

msg.Info.Height = 10;
msg.Info.Width = 10;
msg.Info.Resolution = 0.1;
msg.Data = 100*rand(100,1);

Read the msg data and convert to an OccupancyGrid object.

map = readOccupancyGrid(msg);

 readOccupancyGrid

1-135



Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as an OccupancyGrid ROS
message object handle.

Output Arguments
map — Occupancy map
occupancyMap object handle

Occupancy map, returned as an occupancyMap object handle.

See Also
OccupancyGrid | binaryOccupancyMap | occupancyMap |
readBinaryOccupancyGrid | writeBinaryOccupancyGrid

Introduced in R2016b
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readOccupancyMap3D
Read 3-D map from Octomap ROS message

Syntax
map = readOccupancyMap3D(msg)

Description
map = readOccupancyMap3D(msg) reads the data inside a ROS 'octomap_msgs/
Octomap' message to return an occupancyMap3D object. All message data values are
converted to probabilities from 0 to 1.

Examples

Read Octomap ROS Messages

Load Octomap ROS messages and read them into MATLAB® as an OccupancyMap3D
object.

Load the Octomap ROS messages. The Octomap map messages were previously recorded
in a rosbag and read into MATLAB® as ROS message objects. You could also get these
ROS messages live on a network.

load octomap_msgs
disp(octomapMsgs{1})

  ROS Octomap message with properties:

    MessageType: 'octomap_msgs/Octomap'
         Header: [1x1 Header]
         Binary: 0
             Id: 'OcTree'
     Resolution: 0.0500

 readOccupancyMap3D
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           Data: [1175340x1 int8]

  Use showdetails to show the contents of the message

Read the data from the ROS messages into an occupancyMap3D object. Display each
map.

for i = 1:length(octomapMsgs)
    msg = octomapMsgs{i};
    map{i} = readOccupancyMap3D(msg);
    figure
    show(map{i});
end    

1 Functions — Alphabetical List

1-138



 readOccupancyMap3D

1-139



Input Arguments
msg — 'octomap_msgs/Octomap' ROS message
Octomap object handle

'octomap_msgs/Octomap' ROS message, specified as an Octomap object handle. Get
this message by subscribing to an 'octomap_msgs/Octomap' topic using
rossubscriber on a live ROS network or by creating your own message using
rosmessage.
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Output Arguments
map — 3-D occupancy map
occupancyMap3D object handle

3-D occupancy map, returned as an occupancyMap3D object handle.

See Also
occupancyMap3D | rosmessage | rossubscriber

Introduced in R2018a
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removeEdges
Remove loop closure edges from graph

Syntax
removeEdges(poseGraph,edgeIDs)

Description
removeEdges(poseGraph,edgeIDs) removes loop closure edges from the pose graph.
Edges that are not loop closures cannot be removed.

Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

edgeIDs — Edge IDs
vector of positive integers

Edge IDs, specified as a vector of positive integers.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph or poseGraph3D objects for code
generation:
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poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
specifies an upper bound on the number of edges and nodes allowed in the pose graph
when generating code. This limit is only required when generating code.

See Also
Functions
addRelativePose | edgeConstraints | edges | findEdgeID | nodes |
optimizePoseGraph

Objects
lidarSLAM | poseGraph | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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removeInvalidData
Remove invalid range and angle data

Syntax
validScan = removeInvalidData(scan)
validScan = removeInvalidData(scan,Name,Value)

Description
validScan = removeInvalidData(scan)returns a new lidarScan object with all
Inf and NaN values from the input scan removed. The corresponding angle readings are
also removed.

validScan = removeInvalidData(scan,Name,Value)provides additional options
specified by one or more Name,Value pairs.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside
of the sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)
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Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')
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Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ["RangeLimits",[0.05 2]

RangeLimits — Range reading limits
two-element vector

Range reading limits, specified as a two-element vector, [minRange maxRange], in
meters. All range readings and corresponding angles outside these range limits are
removed
Data Types: single | double

AngleLimits — Angle limits
two-element vector

Angle limits, specified as a two-element vector, [minAngle maxAngle] in radians. All
angles and corresponding range readings outside these angle limits are removed.

Angles are measured counter-clockwise around the positivez-axis.
Data Types: single | double

Output Arguments
validScan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object. All invalid lidar scan readings are
removed.

See Also
lidarScan | matchScans | transformScan

Introduced in R2019b
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rotm2axang
Convert rotation matrix to axis-angle rotation

Syntax
axang = rotm2axang(rotm)

Description
axang = rotm2axang(rotm) converts a rotation given as an orthonormal rotation
matrix, rotm, to the corresponding axis-angle representation, axang. The input rotation
matrix must be in the premultiply form for rotations.

Examples

Convert Rotation Matrix to Axis-Angle Rotation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
axang = rotm2axang(rotm)

axang = 1×4

    1.0000         0         0    3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix
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Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and must be orthonormal. The input rotation matrix
must be in the premultiply form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs.
Consider validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2rotm

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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rotm2eul
Convert rotation matrix to Euler angles

Syntax
eul = rotm2eul(rotm)
eul = rotm2eul(rotm,sequence)

Description
eul = rotm2eul(rotm) converts a rotation matrix, rotm, to the corresponding Euler
angles, eul. The input rotation matrix must be in the premultiply form for rotations. The
default order for Euler angle rotations is "ZYX".

eul = rotm2eul(rotm,sequence) converts a rotation matrix to Euler angles. The
Euler angles are specified in the axis rotation sequence, sequence. The default order for
Euler angle rotations is "ZYX".

Examples

Convert Rotation Matrix to Euler Angles

rotm = [0 0 1; 0 1 0; -1 0 0];
eulZYX = rotm2eul(rotm)

eulZYX = 1×3

         0    1.5708         0
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Convert Rotation Matrix to Euler Angles Using ZYZ Axis Order

rotm = [0 0 1; 0 -1 0; -1 0 0];
eulZYZ = rotm2eul(rotm,'ZYZ')

eulZYZ = 1×3

   -3.1416   -1.5708   -3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must be
in the premultiply form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs.
Consider validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char
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Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2rotm

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a

1 Functions — Alphabetical List

1-152



rotm2quat
Convert rotation matrix to quaternion

Syntax
quat = rotm2quat(rotm)

Description
quat = rotm2quat(rotm) converts a rotation matrix, rotm, to the corresponding unit
quaternion representation, quat. The input rotation matrix must be in the premultiply
form for rotations.

Examples

Convert Rotation Matrix to Quaternion

rotm = [0 0 1; 0 1 0; -1 0 0];
quat = rotm2quat(rotm)

quat = 1×4

    0.7071         0    0.7071         0

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix
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Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must be
in the premultiply form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs.
Consider validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion,
one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2rotm

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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rotm2tform
Convert rotation matrix to homogeneous transformation

Syntax
tform = rotm2tform(rotm)

Description
tform = rotm2tform(rotm) converts the rotation matrix, rotm, into a homogeneous
transformation matrix, tform. The input rotation matrix must be in the premultiply form
for rotations. When using the transformation matrix, premultiply it with the coordinates
to be transformed (as opposed to postmultiplying).

Examples

Convert Rotation Matrix to Homogeneous Transformation
rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
tform = rotm2tform(rotm)

tform = 4×4

     1     0     0     0
     0    -1     0     0
     0     0    -1     0
     0     0     0     1

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix
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Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must be
in the premultiply form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs.
Consider validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be
rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2rotm

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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show
Visualize path segment

Syntax
show(pathSeg)
show(pathSeg,Name,Value)

Description
show(pathSeg) plots the path segment with start and goal positions and their headings.

show(pathSeg,Name,Value) also specifies Name,Value pairs to control display
settings.

Examples

Connect Poses Using Dubins Connection Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})

 show
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Modify Connection Types for Reeds-Shepp Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.
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[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path. Notice the direction of the turns.

show(pathSegObj{1})

pathSegObj{1}.MotionTypes

ans = 1x5 cell array
    {'L'}    {'R'}    {'L'}    {'N'}    {'N'}

pathSegObj{1}.MotionDirections

ans = 1×5

 show
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     1    -1     1     1     1

Disable this specific motion sequence in a new connection object. Reduce the
MinTurningRadius if the robot is more maneuverable. Increase the reverse cost to
reduce the likelihood of reverse directions being used. Connect the poses again to get a
different path.

reedsConnObj = reedsSheppConnection('DisabledPathTypes',{'LpRnLp'});
reedsConnObj.MinTurningRadius = 0.5;
reedsConnObj.ReverseCost = 5;

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);
pathSegObj{1}.MotionTypes

ans = 1x5 cell array
    {'L'}    {'S'}    {'L'}    {'N'}    {'N'}

show(pathSegObj{1})
xlim([0 1.5])
ylim([0 1.5])
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Interpolate Poses For Dubins Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

 show
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[pathSegObj,pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})

Interpolate poses along the path. Get a pose every 0.2 meters, including the transitions
between turns.

length = pathSegObj{1}.Length;
poses = interpolate(pathSegObj{1},0:0.2:length)

poses = 32×3

         0         0         0
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    0.1987   -0.0199    6.0832
    0.3894   -0.0789    5.8832
    0.5646   -0.1747    5.6832
    0.7174   -0.3033    5.4832
    0.8309   -0.4436    5.3024
    0.8418   -0.4595    5.3216
    0.9718   -0.6110    5.5216
    1.1293   -0.7337    5.7216
    1.3081   -0.8226    5.9216
      ⋮

Use the quiver function to plot these poses.

quiver(poses(:,1),poses(:,2),cos(poses(:,3)),sin(poses(:,3)),0.5)

 show
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Error using matlab.internal.editor.figure.SerializedFigureState/serialize
Error while evaluating Figure SizeChangedFcn.

Input Arguments
pathSeg — Path segment
dubinsPathSegment object | reedsSheppPathSegment object

Path segment, specified as a dubinsPathSegment or reedsSheppPathSegment object.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Headings',{'transitions'}

Parent — Axes to plot path onto
Axes handle

Axes to plot path onto, specified as an Axes handle.

Headings — Heading angles to display
cell array of character vector or string scalars

Heading angles to display, specified as a cell array of character vector or string scalars.
Options are any combination of 'start','goal', and 'transitions'. To disable all
heading displays, specify {''}.

Positions — Positions to display
'both' (default) | 'start' | 'goal' | 'none'

Positions to display, specified as 'both', 'start', 'goal', or 'none'. The start
position is marked with green, and the goal position is marked with red.

See Also
Functions
connect | interpolate

Objects
dubinsConnection | dubinsPathSegment | reedsSheppConnection |
reedsSheppPathSegment

Introduced in R2019b
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show
Plot pose graph

Syntax
show(poseGraph)
show(poseGraph,Name,Value)
axes = show( ___ )

Description
show(poseGraph) plots the specified pose graph in a figure.

show(poseGraph,Name,Value) specifies options using Name,Value pair arguments.
For example, 'IDs','on' plots all node and edge IDs of the pose graph.

axes = show( ___ ) returns the axes handle that the pose graph is plotted to using any
of previous syntaxes.

Examples
Optimize a 2-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in
this example is from the Intel Research Lab Dataset and was generated from collecting
wheel odometry and a laser range finder sensor information in an indoor lab.

Load the Intel data set that contains a 2-D pose graph. Inspect the poseGraph object to
view the number of nodes and loop closures.

load intel-2d-posegraph.mat pg
disp(pg)

  poseGraph with properties:
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               NumNodes: 1228
               NumEdges: 1483
    NumLoopClosureEdges: 256
     LoopClosureEdgeIDs: [1x256 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

title('Original Pose Graph')
show(pg,'IDs','off');

Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop
closures. Plot the optimized pose graph to see the adjustment of the nodes with loop
closures.

 show
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updatedPG = optimizePoseGraph(pg);
figure
title('Updated Pose Graph')
show(updatedPG,'IDs','off');

Optimize a 3-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in
this example is taken from the MIT Dataset and was generated using information
extracted from a parking garage.
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Load the pose graph from the MIT dataset. Inspect the poseGraph3D object to view the
number of nodes and loop closures.

load parking-garage-posegraph.mat pg
disp(pg);

  poseGraph3D with properties:

               NumNodes: 1661
               NumEdges: 6275
    NumLoopClosureEdges: 4615
     LoopClosureEdgeIDs: [1x4615 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

title('Original Pose Graph')
show(pg,'IDs','off');
view(-30,45)

 show
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Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop
closures. Plot the optimized pose graph to see the adjustment of the nodes with loop
closures.

updatedPG = optimizePoseGraph(pg);
figure
title('Updated Pose Graph')
show(updatedPG,'IDs','off');
view(-30,45)
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Input Arguments
poseGraph — Pose graph
poseGraph object | poseGraph3D object

Pose graph, specified as a poseGraph or poseGraph3D object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 show
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IDs','off'

Parent — Axes used to plot pose graph
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of
'Parent' and either an Axes or UIAxesobject. See axes or uiaxes.

IDs — Display of IDs on pose graph
'loopclosures' (default) | 'all' | 'nodes' | 'off'

Display of IDs on pose graph, specified as the comma-separated pair consisting of 'IDs'
and one of the following:

• 'all' — Plot node and edge IDs.
• 'nodes' — Plot node IDs.
• 'loopclosures' — Plot loop closure edge IDs.
• 'off' — Do not plot any IDs.

Output Arguments
axes — Axes used to plot the map

Axes object | UIAxes object

Axes used to plot the map, returned as either an Axes or UIAxes object. See axes or
uiaxes.

See Also
Functions
addRelativePose | optimizePoseGraph

Objects
lidarSLAM | poseGraph | poseGraph3D
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Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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tform2axang
Convert homogeneous transformation to axis-angle rotation

Syntax
axang = tform2axang(tform)

Description
axang = tform2axang(tform) converts the rotational component of a homogeneous
transformation, tform, to an axis-angle rotation, axang. The translational components of
tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations.

Examples

Convert Homogeneous Transformation to Axis-Angle Rotation

tform = [1 0 0 0; 0 0 -1 0; 0 1 0 0; 0 0 0 1];
axang = tform2axang(tform)

axang = 1×4

    1.0000         0         0    1.5708

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix
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Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply form
for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axes, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2tform

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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tform2eul
Extract Euler angles from homogeneous transformation

Syntax
eul = tform2eul(tform)
eul = tform2eul(tform, sequence)

Description
eul = tform2eul(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as Euler angles, eul. The translational components
of tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations. The default order for Euler angle rotations is "ZYX".

eul = tform2eul(tform, sequence) extracts the Euler angles, eul, from a
homogeneous transformation, tform, using the specified rotation sequence, sequence.
The default order for Euler angle rotations is "ZYX".

Examples

Extract Euler Angles from Homogeneous Transformation Matrix

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYX = tform2eul(tform)

eulZYX = 1×3

         0         0    3.1416
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Extract Euler Angles from Homogeneous Transformation Matrix Using ZYZ
Rotation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYZ = tform2eul(tform,'ZYZ')

eulZYZ = 1×3

         0   -3.1416    3.1416

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply form
for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix
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Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2tform

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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tform2quat
Extract quaternion from homogeneous transformation

Syntax
quat = tform2quat(tform)

Description
quat = tform2quat(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as a quaternion, quat. The translational
components of tform are ignored. The input homogeneous transformation must be in the
premultiply form for transformations.

Examples

Extract Quaternion from Homogeneous Transformation

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
quat = tform2quat(tform)

quat = 1×4

     0     1     0     0

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix
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Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply form
for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion,
one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2tform

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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tform2rotm
Extract rotation matrix from homogeneous transformation

Syntax
rotm = tform2rotm(tform)

Description
rotm = tform2rotm(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as an orthonormal rotation matrix, rotm. The
translational components of tform are ignored. The input homogeneous transformation
must be in the pre-multiply form for transformations. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Homogeneous Transformation to Rotation Matrix

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
rotm = tform2rotm(tform)

rotm = 3×3

     1     0     0
     0    -1     0
     0     0    -1
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Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the pre-multiply form
for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2tform

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)
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Introduced in R2015a
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tform2trvec
Extract translation vector from homogeneous transformation

Syntax
trvec = tform2trvec(tform)

Description
trvec = tform2trvec(tform) extracts the Cartesian representation of translation
vector, trvec , from a homogeneous transformation, tform. The rotational components
of tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations.

Examples

Extract Translation Vector from Homogeneous Transformation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
trvec = tform2trvec(tform)

trvec = 1×3

    0.5000    5.0000   -1.2000

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

1 Functions — Alphabetical List

1-184



Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply form
for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, returned as an n-by-3 matrix containing n
translation vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trvec2tform

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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transformScan
Transform laser scan based on relative pose

Syntax
transScan = transformScan(scan,relPose)

[transRanges,transAngles] = transformScan(ranges,angles,relPose)

Description
transScan = transformScan(scan,relPose) transforms the laser scan specified in
scan by using the specified relative pose, relPose.

[transRanges,transAngles] = transformScan(ranges,angles,relPose)
transforms the laser scan specified in ranges and angles by using the specified relative
pose, relPose.

Examples

Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transformedScan = transformScan(refScan,[0.5 0.2 0]);

Rotate the laser scan by 20 degrees.

rotateScan = transformScan(refScan,[0,0,deg2rad(20)]);
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Use Scan Matching to Transform Scans

Use the matchScans function to find the relative transformation between two laser
scans. Then transform the second laser scan into the coordinate frame of the first laser
scan.

This example requires an Optimization Toolbox™ license.

Specify a laser scan as ranges and angles. Create a second laser scan that is offset from
the first using transformScan. This transformation simulates a second laser scan being
collected from a new coordinate frame.

refRanges = 5*ones(1,300);
refRanges(51:150) = 3*ones(1,100);
refAngles = linspace(-pi/2,pi/2,300);
offset = [0.5 0.2 0];
[currRanges,currAngles] = transformScan(refRanges,refAngles,offset);

Use scan matching to find the relative pose between the two laser scans. This pose is
close to the specified offset. You must have an Optimization Toolbox™ license to use the
matchScans function.

pose = matchScans(currRanges,currAngles,refRanges,refAngles,'SolverAlgorithm','fminunc')

pose = 1×3

   -0.5102   -0.1806   -0.0394

Transform the second scan to the coordinate frame of the first scan. Plot the two scans to
see how they overlap.

[currRanges2,currAngles2] = transformScan(currRanges,currAngles,pose);
clf
polarplot(refAngles,refRanges,'or')
hold on
polarplot(currAngles2,currRanges2,'.b')
legend('First laser scan','Second laser scan')
hold off
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Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector
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Range values from scan data, specified as a vector in meters. These range values are
distances from a sensor at specified angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the
specific angles of the specified ranges. The vector must be the same length as the
corresponding ranges vector.

relPose — Relative pose of current scan
[x y theta]

Relative pose of current scan, specified as [x y theta], where [x y] is the translation
in meters and theta is the rotation in radians.

Output Arguments
transScan — Transformed lidar scan readings
lidarScan object

Transformed lidar scan readings, specified as a lidarScan object.

transRanges — Range values of transformed scan
vector

Range values of transformed scan, returned as a vector in meters. These range values are
distances from a sensor at specified transAngles. The vector is the same length as the
corresponding transAngles vector.

transAngles — Angle values from scan data
vector

Angle values of transformed scan, returned as a vector in radians. These angle values are
the specific angles of the specified transRanges. The vector is the same length as the
corresponding ranges vector.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
controllerVFH | matchScans | monteCarloLocalization | transformScan

Topics
“Estimate Robot Pose with Scan Matching”

Introduced in R2017a
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trvec2tform
Convert translation vector to homogeneous transformation

Syntax
tform = trvec2tform(trvec)

Description
tform = trvec2tform(trvec) converts the Cartesian representation of a translation
vector, trvec, to the corresponding homogeneous transformation, tform. When using
the transformation matrix, premultiply it with the coordinates to be transformed (as
opposed to postmultiplying).

Examples

Convert Translation Vector to Homogeneous Transformation
trvec = [0.5 6 100];
tform = trvec2tform(trvec)

tform = 4×4

    1.0000         0         0    0.5000
         0    1.0000         0    6.0000
         0         0    1.0000  100.0000
         0         0         0    1.0000

Input Arguments
trvec — Cartesian representation of a translation vector
n-by-3 matrix
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Cartesian representation of a translation vector, specified as an n-by-3 matrix containing
n translation vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be
rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2trvec

Topics
“Coordinate Transformations in Robotics” (Robotics System Toolbox)

Introduced in R2015a
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writeBinaryOccupancyGrid
Write values from grid to ROS message

Syntax
writeBinaryOccupancyGrid(msg,map)

Description
writeBinaryOccupancyGrid(msg,map) writes occupancy values and other
information to the ROS message, msg, from the binary occupancy grid, map.

Examples

Write Binary Occupancy Map Information to ROS Message

Create occupancy grid and message. Write the map onto the message.

map = binaryOccupancyMap(randi([0,1], 10));
msg = rosmessage('nav_msgs/OccupancyGrid');
writeBinaryOccupancyGrid(msg, map);

Input Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

Binary occupancy grid, specified as a binaryOccupancyMap object handle. map is
converted to a 'nav_msgs/OccupancyGrid' message on the ROS network. map is an
object with a grid of binary values, where 1 indicates an occupied location and 0
indications an unoccupied location.
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msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object
handle.

See Also
binaryOccupancyMap | controllerVFH | occupancyMap

Introduced in R2015a
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writeOccupancyGrid
Write values from grid to ROS message

Syntax
writeOccupancyGrid(msg,map)

Description
writeOccupancyGrid(msg,map) writes occupancy values and other information to the
ROS message, msg, from the occupancy grid, map.

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as an OccupancyGrid ROS
message object handle.

map — Occupancy map
occupancyMap object handle

Occupancy map, specified as an occupancyMap object handle.

See Also
OccupancyGrid | binaryOccupancyMap | occupancyMap |
readBinaryOccupancyGrid | writeBinaryOccupancyGrid

Introduced in R2016b
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accelparams class
Accelerometer sensor parameters

Description
The accelparams class creates an accelerometer sensor parameters object. You can use
this object to model an accelerometer when simulating an IMU with imuSensor.

Construction
params = accelparams returns an ideal accelerometer sensor parameters object with
default values.

params = accelparams(Name,Value) configures an accelerometer sensor
parameters object properties using one or more Name-Value pair arguments. Name is a
property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN). Any unspecified properties take default values.

Properties
MeasurementRange — Maximum sensor reading (m/s2)
inf (default) | real positive scalar

Maximum sensor reading in m/s2, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements ((m/s2)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (m/s2)/LSB, specified as a real nonnegative scalar.
Data Types: single | double
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ConstantBias — Constant sensor offset bias (m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in m/s2, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

AxesMisalignment — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the
range [0,100]

Sensor axes skew in %, specified as a real scalar or 3-element row vector with values
ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

NoiseDensity — Power spectral density of sensor noise (m/s2/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in (m/s2/√Hz), specified as a real scalar or 3-
element row vector. This property corresponds to the velocity random walk (VRW). Any
scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in m/s2, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor ((m/s2)(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (m/s2)(√Hz), specified as a real scalar or 3-element
row vector. Any scalar input is converted into a real 3-element row vector where each
element has the input scalar value.
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Data Types: single | double

TemperatureBias — Sensor bias from temperature ((m/s2)/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (m/s2)/℃, specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element
has the input scalar value.
Data Types: single | double

TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the
range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element
row vector with values ranging from 0 to 100. Any scalar input is converted into a real 3-
element row vector where each element has the input scalar value.
Data Types: single | double

Examples

Generate Accelerometer Data from Stationary Inputs

Generate accelerometer data for an imuSensor object from stationary inputs.

Generate an accelerometer parameter object with a maximum sensor reading of 19.6
m/s2 and a resolution of 0.598 mm/s2 /LSB. The constant offset bias is 0.49 m/s2. The
sensor has a power spectral density of 3920 μm/s2 / Hz. The bias from temperature is
0.294 m/s2 /0C. The scale factor error from temperature is 0.02%/0C. The sensor axes
are skewed by 2%.

params = accelparams('MeasurementRange',19.6,'Resolution',0.598e-3,'ConstantBias',0.49,'NoiseDensity',3920e-6,'TemperatureBias',0.294,'TemperatureScaleFactor',0.02,'AxesMisalignment',2);

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object
using the accelerometer parameter object.

Fs = 100;
numSamples = 1000;
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t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('SampleRate', Fs, 'Accelerometer', params);

Generate accelerometer data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);
 
accelData = imu(acc, angvel, orient);

Plot the resultant accelerometer data.

plot(t, accelData)
title('Accelerometer')
xlabel('s')
ylabel('m/s^2')
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
System Objects
imuSensor

Classes
gyroparams | magparams

Introduced in R2018b
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ahrs10filter
Height and orientation from MARG and altimeter readings

Description
The ahrs10filter object fuses MARG and altimeter sensor data to estimate device
height and orientation. MARG (magnetic, angular rate, gravity) data is typically derived
from magnetometer, gyroscope, and accelerometer sensors. The filter uses an 18-element
state vector to track the orientation quaternion, vertical velocity, vertical position, MARG
sensor biases, and geomagnetic vector. The ahrs10filter object uses an extended
Kalman filter to estimate these quantities.

Creation

Syntax
FUSE = ahrs10filter
FUSE = ahrs10filter('ReferenceFrame',RF)
FUSE = ahrs10filter( ___ ,Name,Value)

Description
FUSE = ahrs10filter returns an extended Kalman filter object, FUSE, for sensor
fusion of MARG and altimeter readings to estimate device height and orientation.

FUSE = ahrs10filter('ReferenceFrame',RF) returns an extended Kalman filter
object that estimates device height and orientation relative to the reference frame RF.
Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is
'NED'.

FUSE = ahrs10filter( ___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
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Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the IMU in Hz, specified as a positive scalar.
Data Types: single | double

GyroscopeNoise — Multiplicative process noise variance from gyroscope ((rad/
s)2)
[1e-9,1e-9,1e-9] (default) | scalar | three-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as positive
real finite numbers.
Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from
accelerometer ((m/s2)2)
[1e-4,1e-4,1e-4] (default) | scalar | three-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as
positive real finite numbers.
Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope
bias ((rad/s2)2)
[1e-10,1e-10,1e-10] (default) | scalar | three-element row vector

Multiplicative process noise variance from the gyroscope bias in (rad/s2)2, specified as
positive real finite numbers.
Data Types: single | double

AccelerometerBiasNoise — Multiplicative process noise variance from
accelerometer bias ((m/s2)2)
[1e-4,1e-4,1e-4] (default) | scalar | three-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as
positive real finite numbers.
Data Types: single | double
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GeomagneticVectorNoise — Additive process noise for geomagnetic vector (μT2)
[1e-6,1e-6,1e-6] (default) | scalar | three-element row vector

Additive process noise for geomagnetic vector in μT2, specified as positive real finite
numbers.
Data Types: single | double

MagnetometerBiasNoise — Additive process noise for magnetometer bias (μT2)
[0.1,0.1,0.1] (default) | scalar | three-element row vector

Additive process noise for magnetometer bias in μT2, specified as positive real finite
numbers.
Data Types: single | double

State — State vector of extended Kalman filter
18-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion
parts)

N/A 1:4

Altitude (NED or ENU) m 5
Vertical Velocity (NED or
ENU)

m/s 6

Delta Angle Bias (XYZ) rad/s 7:9
Delta Velocity Bias (XYZ) m/s 10:12
Geomagnetic Field Vector
(NED or ENU)

μT 13:15

Magnetometer Bias (XYZ) μT 16:18

The default initial state corresponds to an object at rest located at [0 0 0] in geodetic
LLA coordinates.
Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(18)*1e-6 (default) | 18-by-18 matrix
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State error covariance for the Kalman filter, specified as an 18-by-18-element matrix of
real numbers.
Data Types: single | double

Object Functions
predict Update states using accelerometer and gyroscope data
fusemag Correct states using magnetometer data
fusealtimeter Correct states using altimeter data
correct Correct states using direct state measurements
pose Current orientation and position estimate
reset Reset internal states
stateinfo Display state vector information

Examples

Estimate Pose of UAV

Load logged sensor data, ground truth pose, and initial state and initial state covariance.
Calculate the number of IMU samples per altimeter sample and the number of IMU
samples per magnetometer sample.

load('fuse10exampledata.mat', ...
     'imuFs','accelData','gyroData', ...
     'magnetometerFs','magData', ...
     'altimeterFs','altData', ...
     'expectedHeight','expectedOrient', ...
     'initstate','initcov');

imuSamplesPerAlt = fix(imuFs/altimeterFs);
imuSamplesPerMag = fix(imuFs/magnetometerFs);

Create an AHRS filter that fuses MARG and altimeter readings to estimate height and
orientation. Set the sampling rate and measurement noises of the sensors. The values
were determined from datasheets and experimentation.

filt = ahrs10filter('IMUSampleRate',imuFs, ...
                    'AccelerometerNoise',0.1, ...
                    'State',initstate, ...
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                    'StateCovariance',initcov);

Ralt = 0.24;
Rmag = 0.9;

Preallocate variables to log height and orientation.

numIMUSamples = size(accelData,1);
estHeight = zeros(numIMUSamples,1);
estOrient = zeros(numIMUSamples,1,'quaternion');

Fuse accelerometer, gyroscope, magnetometer and altimeter data. The outer loop
predicts the filter forward at the fastest sample rate (the IMU sample rate).

for ii = 1:numIMUSamples
    
    % Use predict to estimate the filter state based on the accelometer and
    % gyroscope data.
    predict(filt,accelData(ii,:),gyroData(ii,:));
    
    % Magnetometer data is collected at a lower rate than IMU data. Fuse
    % magnetometer data at the lower rate.
    if ~mod(ii,imuSamplesPerMag)
        fusemag(filt,magData(ii,:),Rmag);
    end
    
    % Altimeter data is collected at a lower rate than IMU data. Fuse
    % altimeter data at the lower rate.
    if ~mod(ii, imuSamplesPerAlt)
        fusealtimeter(filt,altData(ii),Ralt);
    end
    
    % Log the current height and orientation estimate.
    [estHeight(ii),estOrient(ii)] = pose(filt);
end

Calculate the RMS errors between the known true height and orientation and the output
from the AHRS filter.

pErr = expectedHeight - estHeight;
qErr = rad2deg(dist(expectedOrient,estOrient));

pRMS = sqrt(mean(pErr.^2));
qRMS = sqrt(mean(qErr.^2));
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fprintf('Altitude RMS Error\n');

Altitude RMS Error

fprintf('\t%.2f (meters)\n\n',pRMS);

    0.38 (meters)

Visualize the true and estimated height over time.

t = (0:(numIMUSamples-1))/imuFs;
plot(t,expectedHeight);hold on
plot(t,estHeight);hold off
legend('Ground Truth','Estimated Height','location','best')
ylabel('Height (m)')
xlabel('Time (s)')
grid on
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fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n',qRMS);

    2.93 (degrees)
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | insfilter

Introduced in R2019a

 ahrs10filter
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correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and
state estimation error covariance based on the measurement and measurement
covariance. The measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1,18]

State vector index of measurement to correct, specified as an N-element vector of
increasing integers in the range [1,18].

The state values represent:

State Units Index
Orientation (quaternion
parts)

N/A 1:4

Altitude (NED) m 5
Vertical Velocity (NED) m/s 6
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State Units Index
Delta Angle Bias (XYZ) rad/s 7:9
Delta Velocity Bias (XYZ) m/s 10:12
Geomagnetic Field Vector
(NED)

μT 13:15

Magnetometer Bias (XYZ) μT 16:18

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of
elements of the index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N
is the number of elements of the index argument, idx.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a
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fusealtimeter
Correct states using altimeter data

Syntax
fusealtimeter(FUSE,altimeterReadings,altimeterReadingsCovariance)

Description
fusealtimeter(FUSE,altimeterReadings,altimeterReadingsCovariance)
fuses altimeter data to correct the state estimate.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

altimeterReadings — Altimeter readings (m)
real scalar

Altimeter readings in meters, specified as a real scalar.
Data Types: single | double

altimeterReadingsCovariance — Altimeter readings error covariance (m2)
real scalar

Altimeter readings error covariance in m2, specified as a real scalar.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a
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fusemag
Correct states using magnetometer data

Syntax
fusemag(FUSE,magReadings,magReadingsCovariance)

Description
fusemag(FUSE,magReadings,magReadingsCovariance) fuses magnetometer data
to correct the state estimate.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row
vector, or 3-by-3 matrix.
Data Types: single | double

2 Classes — Alphabetical List

2-20



Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a
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pose
Current orientation and position estimate

Syntax
[position, orientation, velocity] = pose(FUSE)
[position, orientation, velocity] = pose(FUSE,format)

Description
[position, orientation, velocity] = pose(FUSE) returns the current estimate
of the pose.

[position, orientation, velocity] = pose(FUSE,format)returns the current
estimate of the pose with orientation in the specified orientation format.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or
'rotmat' for a rotation matrix.
Data Types: char | string
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Output Arguments
position — Vertical position estimate in the local NED coordinate system (m)
scalar

Vertical position estimate in the local NED coordinate system in meters, returned as a
scalar.
Data Types: single | double

orientation — Orientation estimate in the local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, returned as a scalar quaternion
or 3-by-3 rotation matrix. The quaternion or rotation matrix represents a frame rotation
from the local NED reference frame to the body reference frame.
Data Types: single | double | quaternion

velocity — Vertical velocity estimate in the local NED coordinate system (m/s)
scalar

Vertical velocity estimate in the local NED coordinate system in m/s, returned as a scalar.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a
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predict
Update states using accelerometer and gyroscope data

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope
data to update the state estimate.

Input Arguments
FUSE — ahrs10Filter object
object

Object of ahrs10filter.

accelReadings — Accelerometer readings in the sensor body coordinate system
(m/s2)
N-by-3 matrix

Accelerometer readings in local sensor body coordinate system in m/s2, specified as an N-
by-3 matrix. N is the number of samples, and the three columns of accelReadings
represent the [x y z] measurements. Accelerometer readings are assumed to correspond
to the sample rate specified by the IMUSampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in the sensor body coordinate system
(rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3
matrix. N is the number of samples, and the three columns of gyroReadings represent
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the [x y z] measurements. Gyroscope readings are assumed to correspond to the sample
rate specified by the IMUSampleRate property.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a
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reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their
default values.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a
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stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the
associated units.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a
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ahrsfilter
Orientation from accelerometer, gyroscope, and magnetometer readings

Description
The ahrsfilter System object™ fuses accelerometer, magnetometer, and gyroscope
sensor data to estimate device orientation.

To estimate device orientation:

1 Create the ahrsfilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
FUSE = ahrsfilter
FUSE = ahrsfilter('ReferenceFrame',RF)
FUSE = ahrsfilter( ___ ,Name,Value)

Description
FUSE = ahrsfilter returns an indirect Kalman filter System object, FUSE, for sensor
fusion of accelerometer, gyroscope, and magnetometer data to estimate device
orientation and angular velocity. The filter uses a 12-element state vector to track the
estimation error for the orientation, the gyroscope bias, the linear acceleration, and the
magnetic disturbance.

FUSE = ahrsfilter('ReferenceFrame',RF) returns an ahrsfilter System object that
fuses accelerometer, gyroscope, and magnetometer data to estimate device orientation

2 Classes — Alphabetical List

2-28



relative to the reference frame RF. Specify RF as 'NED' (North-East-Down) or 'ENU'
(East-North-Up). The default value is 'NED'.

FUSE = ahrsfilter( ___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SampleRate — Input sample rate of sensor data (Hz)
100 (default) | positive scalar

Input sample rate of the sensor data in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

DecimationFactor — Decimation factor
1 (default) | positive integer scalar

Decimation factor by which to reduce the input sensor data rate as part of the fusion
algorithm, specified as a positive integer scalar.

The number of rows of the inputs –– accelReadings, gyroReadings, and
magReadings –– must be a multiple of the decimation factor.
Data Types: single | double

AccelerometerNoise — Variance of accelerometer signal noise ((m/s2)2)
0.00019247 (default) | positive real scalar

Variance of accelerometer signal noise in (m/s2)2, specified as a positive real scalar.
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Tunable: Yes
Data Types: single | double

MagnetometerNoise — Variance of magnetometer signal noise (μT2)
0.1 (default) | positive real scalar

Variance of magnetometer signal noise in μT2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

GyroscopeNoise — Variance of gyroscope signal noise ((rad/s)2)
9.1385e-5 (default) | positive real scalar

Variance of gyroscope signal noise in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

GyroscopeDriftNoise — Variance of gyroscope offset drift ((rad/s)2)
3.0462e-13 (default) | positive real scalar

Variance of gyroscope offset drift in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

LinearAccelerationNoise — Variance of linear acceleration noise (m/s2)2

0.0096236 (default) | positive real scalar

Variance of linear acceleration noise in (m/s2)2, specified as a positive real scalar. Linear
acceleration is modeled as a lowpass-filtered white noise process.

Tunable: Yes
Data Types: single | double

LinearAccelerationDecayFactor — Decay factor for linear acceleration drift
0.5 (default) | scalar in the range [0,1)

Decay factor for linear acceleration drift, specified as a scalar in the range [0,1). If linear
acceleration is changing quickly, set LinearAcclerationDecayFactor to a lower
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value. If linear acceleration changes slowly, set LinearAcclerationDecayFactor to a
higher value. Linear acceleration drift is modeled as a lowpass-filtered white noise
process.

Tunable: Yes
Data Types: single | double

MagneticDisturbanceNoise — Variance of magnetic disturbance noise (μT2)
0.5 (default) | real finite positive scalar

Variance of magnetic disturbance noise in μT2, specified as a real finite positive scalar.

Tunable: Yes
Data Types: single | double

MagneticDisturbanceDecayFactor — Decay factor for magnetic disturbance
0.5 (default) | positive scalar in the range [0,1]

Decay factor for magnetic disturbance, specified as a positive scalar in the range [0,1].
Magnetic disturbance is modeled as a first order Markov process.

Tunable: Yes
Data Types: single | double

InitialProcessNoise — Covariance matrix for process noise
12-by-12 matrix

Covariance matrix for process noise, specified as a 12-by-12 matrix. The default is:

  Columns 1 through 6

   0.000006092348396                   0                   0                   0                   0                   0
                   0   0.000006092348396                   0                   0                   0                   0
                   0                   0   0.000006092348396                   0                   0                   0
                   0                   0                   0   0.000076154354947                   0                   0
                   0                   0                   0                   0   0.000076154354947                   0
                   0                   0                   0                   0                   0   0.000076154354947
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
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                   0                   0                   0                   0                   0                   0

  Columns 7 through 12

                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
   0.009623610000000                   0                   0                   0                   0                   0
                   0   0.009623610000000                   0                   0                   0                   0
                   0                   0   0.009623610000000                   0                   0                   0
                   0                   0                   0   0.600000000000000                   0                   0
                   0                   0                   0                   0   0.600000000000000                   0
                   0                   0                   0                   0                   0   0.600000000000000

The initial process covariance matrix accounts for the error in the process model.
Data Types: single | double

ExpectedMagneticFieldStrength — Expected estimate of magnetic field
strength (μT)
50 (default) | real positive scalar

Expected estimate of magnetic field strength in μT, specified as a real positive scalar. The
expected magnetic field strength is an estimate of the magnetic field strength of the Earth
at the current location.

Tunable: Yes
Data Types: single | double

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size
of the output depends on the input size, N, and the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

Data Types: char | string
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Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,
magReadings)

Description
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,
magReadings) fuses accelerometer, gyroscope, and magnetometer data to compute
orientation and angular velocity measurements. The algorithm assumes that the device is
stationary before the first call.

Input Arguments
accelReadings — Accelerometer readings in sensor body coordinate system
(m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-
by-3 matrix. N is the number of samples, and the three columns of accelReadings
represent the [x y z] measurements. Accelerometer readings are assumed to correspond
to the sample rate specified by the SampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3
matrix. N is the number of samples, and the three columns of gyroReadings represent
the [x y z] measurements. Gyroscope readings are assumed to correspond to the sample
rate specified by the SampleRate property.
Data Types: single | double

magReadings — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix
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Magnetometer readings in the sensor body coordinate system in µT, specified as an N-
by-3 matrix. N is the number of samples, and the three columns of magReadings
represent the [x y z] measurements. Magnetometer readings are assumed to correspond
to the sample rate specified by the SampleRate property.
Data Types: single | double

Output Arguments
orientation — Orientation that rotates quantities from local navigation
coordinate system to sensor body coordinate system
M-by-1 array of quaternions (default) | 3-by-3-by-M array

Orientation that can rotate quantities from the local navigation coordinate system to a
body coordinate system, returned as quaternions or an array. The size and type of
orientation depends on whether the OrienationFormat property is set to
'quaternion' or 'Rotation matrix':

• 'quaternion' –– the output is an M-by-1 vector of quaternions, with the same
underlying data type as the inputs

• 'Rotation matrix' –– the output is a 3-by-3-by-M array of rotation matrices the
same data type as the inputs

The number of input samples, N, and the DecimationFactor property determine M.

You can use orientation in a rotateframe function to rotate quantities from a local
navigation system to a sensor body coordinate system.
Data Types: quaternion | single | double

angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
M-by-3 array (default)

Angular velocity with gyroscope bias removed in the sensor body coordinate system in
rad/s, returned as an M-by-3 array. The number of input samples, N, and the
DecimationFactor property determine M.
Data Types: single | double
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Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Estimate Orientation Using ahrsfilter

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and
magnetometer sensor data from a device oscillating in pitch (around y-axis), then yaw
(around z-axis), and then roll (around x-axis). The file also contains the sample rate of the
recording.

load 'rpy_9axis' sensorData Fs
accelerometerReadings = sensorData.Acceleration;
gyroscopeReadings = sensorData.AngularVelocity;
magnetometerReadings = sensorData.MagneticField;

Create an ahrsfilter System object™ with SampleRate set to the sample rate of the
sensor data. Specify a decimation factor of two to reduce the computational cost of the
algorithm.

decim = 2;
fuse = ahrsfilter('SampleRate',Fs,'DecimationFactor',decim);

Pass the accelerometer readings, gyroscope readings, and magnetometer readings to the
ahrsfilter object, fuse, to output an estimate of the sensor body orientation over time.
By default, the orientation is output as a vector of quaternions.

q = fuse(accelerometerReadings,gyroscopeReadings,magnetometerReadings);
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Orientation is defined by angular displacement required to rotate a parent coordinate
system to a child coordinate system. Plot the orientation in Euler angles in degrees over
time.

ahrsfilter correctly estimates the change in orientation over time, including the south-
facing initial orientation.

time = (0:decim:size(accelerometerReadings,1)-1)/Fs;

plot(time,eulerd(q,'ZYX','frame'))
title('Orientation Estimate')
legend('z-axis', 'y-axis', 'x-axis')
ylabel('Rotation (degrees)')
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Simulate Magnetic Jamming on ahrsFilter

This example shows how performance of the ahrsfilter System object™ is affected by
magnetic jamming.

Load StationaryIMUReadings, which contains accelerometer, magnetometer, and
gyroscope readings from a stationary IMU.

load 'StationaryIMUReadings.mat' accelReadings magReadings gyroReadings SampleRate

numSamples = size(accelReadings,1);

The ahrsfilter uses magnetic field strength to stabilize its orientation against the
assumed constant magnetic field of the Earth. However, there are many natural and man-
made objects which output magnetic fields and can confuse the algorithm. To account for
the presence of transient magnetic fields, you can set the MagneticDisturbanceNoise
property on the ahrsfilter object.

Create an ahrsfilter object with the decimation factor set to 2 and note the default
expected magnetic field strength.

decim = 2;
FUSE = ahrsfilter('SampleRate',SampleRate,'DecimationFactor',decim);

Fuse the IMU readings using the attitude and heading reference system (AHRS) filter, and
then visualize the orientation of the sensor body over time. The orientation fluctuates at
the beginning and stabilizes after approximately 60 seconds.

orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');
time = (0:decim:(numSamples-1))'/SampleRate;

figure(1)
plot(time,orientationEulerAngles(:,1), ...
     time,orientationEulerAngles(:,2), ...
     time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data')
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Mimic magnetic jamming by adding a transient, strong magnetic field to the magnetic
field recorded in the magReadings. Visualize the magnetic field jamming.

jamStrength = [10,5,2];
startStop = (50*SampleRate):(150*SampleRate);
jam = zeros(size(magReadings));
jam(startStop,:) = jamStrength.*ones(numel(startStop),3);

magReadings = magReadings + jam;

figure(2)
plot(time,magReadings(1:decim:end,:))
xlabel('Time (s)')
ylabel('Magnetic Field Strength (\mu T)')

2 Classes — Alphabetical List

2-38



title('Simulated Magnetic Field with Jamming')
legend('z-axis','y-axis','x-axis')

Run the simulation again using the magReadings with magnetic jamming. Plot the
results and note the decreased performance in orientation estimation.

reset(FUSE)
orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(3)
plot(time,orientationEulerAngles(:,1), ...
     time,orientationEulerAngles(:,2), ...
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     time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data with Magnetic Disturbance and Default Properties')

The magnetic jamming was misinterpreted by the AHRS filter, and the sensor body
orientation was incorrectly estimated. You can compensate for jamming by increasing the
MagneticDisturbanceNoise property. Increasing the MagneticDisturbanceNoise
property increases the assumed noise range for magnetic disturbance, and the entire
magnetometer signal is weighted less in the underlying fusion algorithm of ahrsfilter.

Set the MagneticDisturbanceNoise to 200 and run the simulation again.
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The orientation estimation output from ahrsfilter is more accurate and less affected
by the magnetic transient. However, because the magnetometer signal is weighted less in
the underlying fusion algorithm, the algorithm may take more time to restabilize.

reset(FUSE)
FUSE.MagneticDisturbanceNoise = 20;

orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(4)
plot(time,orientationEulerAngles(:,1), ...
     time,orientationEulerAngles(:,2), ...
     time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data with Magnetic Disturbance and Modified Properties')
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Track Shaking 9-Axis IMU

This example uses the ahrsfilter System object™ to fuse 9-axis IMU data from a
sensor body that is shaken. Plot the quaternion distance between the object and its final
resting position to visualize performance and how quickly the filter converges to the
correct resting position. Then tune parameters of the ahrsfilter so that the filter
converges more quickly to the ground-truth resting position.

Load IMUReadingsShaken into your current workspace. This data was recorded from an
IMU that was shaken then laid in a resting position. Visualize the acceleration, magnetic
field, and angular velocity as recorded by the sensors.
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load 'IMUReadingsShaken' accelReadings gyroReadings magReadings SampleRate
numSamples = size(accelReadings,1);
time = (0:(numSamples-1))'/SampleRate;

figure(1)
subplot(3,1,1)
plot(time,accelReadings)
title('Accelerometer Reading')
ylabel('Acceleration (m/s^2)')

subplot(3,1,2)
plot(time,magReadings)
title('Magnetometer Reading')
ylabel('Magnetic Field (\muT)')

subplot(3,1,3)
plot(time,gyroReadings)
title('Gyroscope Reading')
ylabel('Angular Velocity (rad/s)')
xlabel('Time (s)')
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Create an ahrsfilter and then fuse the IMU data to determine orientation. The
orientation is returned as a vector of quaternions; convert the quaternions to Euler angles
in degrees. Visualize the orientation of the sensor body over time by plotting the Euler
angles required, at each time step, to rotate the global coordinate system to the sensor
body coordinate system.

fuse = ahrsfilter('SampleRate',SampleRate);
orientation = fuse(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(2)
plot(time,orientationEulerAngles(:,1), ...
     time,orientationEulerAngles(:,2), ...
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     time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation over Time')
legend('Rotation around z-axis', ...
       'Rotation around y-axis', ...
       'Rotation around x-axis')

In the IMU recording, the shaking stops after approximately six seconds. Determine the
resting orientation so that you can characterize how fast the ahrsfilter converges.

To determine the resting orientation, calculate the averages of the magnetic field and
acceleration for the final four seconds and then use the ecompass function to fuse the
data.
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Visualize the quaternion distance from the resting position over time.

restingOrientation = ecompass(mean(accelReadings(6*SampleRate:end,:)), ...
                              mean(magReadings(6*SampleRate:end,:)));

figure(3)
plot(time,rad2deg(dist(restingOrientation,orientation)))
hold on
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')

Modify the default ahrsfilter properties so that the filter converges to gravity more
quickly. Increase the GyroscopeDriftNoise to 1e-2 and decrease the
LinearAccelerationNoise to 1e-4. This instructs the ahrsfilter algorithm to
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weigh gyroscope data less and accelerometer data more. Because the accelerometer
data provides the stabilizing and consistent gravity vector, the resulting orientation
converges more quickly.

Reset the filter, fuse the data, and plot the results.

fuse.LinearAccelerationNoise = 1e-4;
fuse.GyroscopeDriftNoise     = 1e-2;
reset(fuse)

orientation = fuse(accelReadings,gyroReadings,magReadings);

figure(3)
plot(time,rad2deg(dist(restingOrientation,orientation)))
legend('Default AHRS Filter','Tuned AHRS Filter')
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Algorithms
Note: The following algorithm only applies to an NED reference frame.

The ahrsfilter uses the nine-axis Kalman filter structure described in [1] (Sensor
Fusion and Tracking Toolbox). The algorithm attempts to track the errors in orientation,
gyroscope offset, linear acceleration, and magnetic disturbance to output the final
orientation and angular velocity. Instead of tracking the orientation directly, the indirect
Kalman filter models the error process, x, with a recursive update:
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xk =

θk
bk
ak
dk

= Fk

θk− 1
bk− 1
ak− 1
dk− 1

+ wk

where xk is a 12-by-1 vector consisting of:

• θk –– 3-by-1 orientation error vector, in degrees, at time k
• bk –– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time k
• ak –– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time k
• dk –– 3-by-1 magnetic disturbance error vector measured in the sensor frame, in µT, at

time k

and where wk is a 12-by-1 additive noise vector, and Fk is the state transition model.

Because xk is defined as the error process, the a priori estimate is always zero, and
therefore the state transition model, Fk, is zero. This insight results in the following
reduction of the standard Kalman equations:

Standard Kalman equations:

xk
− = Fkxk− 1

+

Pk
− = FkPk− 1

+ Fk
T + Qk

yk = zk− Hkxk
−

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = xk

− + Kkyk

Pk
+ = Pk−− KkHkPk

−

Kalman equations used in this algorithm:
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xk
− = 0

Pk
− = Qk

yk = zk

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = Kkyk

Pk
+ = Pk−− KkHkPk

−

where:

• xk
− –– predicted (a priori) state estimate; the error process

• Pk
− –– predicted (a priori) estimate covariance

• yk –– innovation
• Sk –– innovation covariance
• Kk –– Kalman gain
• xk

+ –– updated (a posteriori) state estimate
• Pk

+ –– updated (a posteriori) estimate covariance

k represents the iteration, the superscript + represents an a posteriori estimate, and the
superscript − represents an a priori estimate.

The graphic and following steps describe a single frame-based iteration through the
algorithm.
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Before the first iteration, the accelReadings, gyroReadings, and magReadings inputs
are chunked into DecimationFactor-by-3 frames. For each chunk, the algorithm uses
the most current accelerometer and magnetometer readings corresponding to the chunk
of gyroscope readings.

Detailed Overview
Walk through the algorithm for an explanation of each stage of the detailed overview.
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Model
The algorithm models acceleration and angular change as linear processes.

Predict Orientation

The orientation for the current frame is predicted by first estimating the angular change
from the previous frame:

ΔφN × 3 =
gyroReadingsN × 3− gyroOf f set1 × 3

f s

where N is the decimation factor specified by the DecimationFactor property and fs is the
sample rate specified by the SampleRate property.

The angular change is converted into quaternions using the rotvec quaternion
construction syntax:
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ΔQN × 1 = quaternion(ΔφN × 3, ′rotvec′)

The previous orientation estimate is updated by rotating it by ΔQ:

q1 × 1
− = q1 × 1

+ ∏
n = 1

N
ΔQn

During the first iteration, the orientation estimate, q−, is initialized by ecompass.

Estimate Gravity from Orientation

The gravity vector is interpreted as the third column of the quaternion, q−, in rotation
matrix form:

g1 × 3 = rPrior(: , 3) T

See [1] (Sensor Fusion and Tracking Toolbox) for an explanation of why the third column
of rPrior can be interpreted as the gravity vector.

Estimate Gravity from Acceleration

A second gravity vector estimation is made by subtracting the decayed linear acceleration
estimate of the previous iteration from the accelerometer readings:

gAccel1 × 3 = accelReadings1 × 3− linAccelprior1 × 3

Estimate Earth's Magnetic Vector

Earth's magnetic vector is estimated by rotating the magnetic vector estimate from the
previous iteration by the a priori orientation estimate, in rotation matrix form:

mGyro1 × 3 = rPrior mT T
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Error Model

The error model combines two differences:

• The difference between the gravity estimate from the accelerometer readings and the
gravity estimate from the gyroscope readings: zg = g− gAccel

• The difference between the magnetic vector estimate from the gyroscope readings and
the magnetic vector estimate from the magnetometer:zm = mGyro−magReadings

Magnetometer Correct
The magnetometer correct estimates the error in the magnetic vector estimate and
detects magnetic jamming.

Magnetometer Disturbance Error

The magnetic disturbance error is calculated by matrix multiplication of the Kalman gain
associated with the magnetic vector with the error signal:

mError3 × 1 = K(10:12, : )3 × 6 z1 × 6
T T
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The Kalman gain, K, is the Kalman gain calculated in the current iteration.

Magnetic Jamming Detection

Magnetic jamming is determined by verifying that the power of the detected magnetic
disturbance is less than or equal to four times the power of the expected magnetic field
strength:

tf =
true
false

if
else

∑ mError 2 > 4 ExpectedMagneticFieldStrength 2

ExpectedMagneticFieldStrength is a property of ahrsfilter.

Kalman Equations
The Kalman equations use the gravity estimate derived from the gyroscope readings, g,
the magnetic vector estimate derived from the gyroscope readings, mGyro, and the
observation of the error process, z, to update the Kalman gain and intermediary
covariance matrices. The Kalman gain is applied to the error signal, z, to output an a
posteriori error estimate, x+.
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Observation Model

The observation model maps the 1-by-3 observed states, g and mGyro, into the 6-by-12
true state, H.

The observation model is constructed as:

H3 × 9 =

0 gz −gy 0 −κgz κgy 1 0 0 0 0 0
−gz 0 gx κgz 0 −κgx 0 1 0 0 0 0
gy −gx 0 −κgy κgx 0 0 0 1 0 0 0
0 mz −my 0 −κmz −κmy 0 0 0 −1 0 0
−mz 0 mx κmz 0 −κmx 0 0 0 0 −1 0
my −mx 0 −κmy κmx 0 0 0 0 0 0 −1

2 Classes — Alphabetical List

2-56



where gx, gy, and gz are the x-, y-, and z-elements of the gravity vector estimated from the
a priori orientation, respectively. mx, my, and mz are the x-, y-, and z-elements of the
magnetic vector estimated from the a priori orientation, respectively. κ is a constant
determined by the SampleRate and DecimationFactor properties: κ =
DecimationFactor/SampleRate.

See sections 7.3 and 7.4 of [1] (Sensor Fusion and Tracking Toolbox) for a derivation of
the observation model.

Innovation Covariance

The innovation covariance is a 6-by-6 matrix used to track the variability in the
measurements. The innovation covariance matrix is calculated as:

S6x6 = R6x6 + H6x12 P12x12
− H6x12

T

where

• H is the observation model matrix
• P− is the predicted (a priori) estimate of the covariance of the observation model

calculated in the previous iteration
• R is the covariance of the observation model noise, calculated as:

R6 × 6 =

accelnoise 0 0 0 0 0
0 accelnoise 0 0 0 0
0 0 accelnoise 0 0 0
0 0 0 magnoise 0 0
0 0 0 0 magnoise 0
0 0 0 0 0 magnoise

where

accelnoise = AccelerometerNoise + LinearAccelerationNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

and

magnoise = MagnetometerNoise + MagneticDisturbanceNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise
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The following properties define the observation model noise variance:

• κ –– DecimationFactor/SampleRate
• AccelerometerNoise
• LinearAccelerationNoise
• GyroscopeDriftNoise
• GyroscopeNoise
• MagneticDisturbanceNoise
• MagnetometerNoise

Update Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the
state.

The error estimate covariance matrix is updated as:

P12 × 12
+ = P12 × 12

− − K12 × 6 H6 × 12 P12 × 12
−

where K is the Kalman gain, H is the measurement matrix, and P− is the error estimate
covariance calculated during the previous iteration.

Predict Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the
state. The a priori error estimate covariance, P−, is set to the process noise covariance, Q,
determined during the previous iteration. Q is calculated as a function of the a posteriori
error estimate covariance, P+. When calculating Q, it is assumed that the cross-
correlation terms are negligible compared to the autocorrelation terms, and are set to
zero:
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Q =

P+(1) + κ2P+(40) + β + η 0 0 −κ P+(40) + β 0 0 0 0 0 0 0 0

0 P+(14) + κ2P+(53) + β + η 0 0 −κ P+(53) + β 0 0 0 0 0 0 0

0 0 P+(27) + κ2P+(66) + β + η 0 0 −κ P+(66) + β 0 0 0 0 0 0

−κ P+(40) + β 0 0 P+(40) + β 0 0 0 0 0 0 0 0

0 −κ P+(53) + β 0 0 P+(53) + β 0 0 0 0 0 0 0

0 0 −κ P+(66) + β 0 0 P+(66) + β 0 0 0 0 0 0

0 0 0 0 0 0 ν2P+(79) + ξ 0 0 0 0 0

0 0 0 0 0 0 0 ν2P+(92) + ξ 0 0 0 0

0 0 0 0 0 0 0 0 ν2P+(105) + ξ 0 0 0

0 0 0 0 0 0 0 0 0 σ2P+(118) + γ 0 0

0 0 0 0 0 0 0 0 0 0 σ2P+(131) + γ 0

0 0 0 0 0 0 0 0 0 0 0 σ2P+(144) + γ
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where

• P+ –– is the updated (a posteriori) error estimate covariance
• κ –– DecimationFactor/SampleRate
• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• ν –– LinearAcclerationDecayFactor
• ξ –– LinearAccelerationNoise
• σ –– MagneticDisturbanceDecayFactor
• γ –– MagneticDisturbanceNoise

See section 10.1 of [1] (Sensor Fusion and Tracking Toolbox) for a derivation of the terms
of the process error matrix.

Kalman Gain

The Kalman gain matrix is a 12-by-6 matrix used to weight the innovation. In this
algorithm, the innovation is interpreted as the error process, z.

The Kalman gain matrix is constructed as:

K12 × 6 = P12 × 12
− H6 × 12

T S6 × 6
T −1

where

• P− –– predicted error covariance
• H –– observation model
• S –– innovation covariance

Update a Posteriori Error

The a posterior error estimate is determined by combining the Kalman gain matrix with
the error in the gravity vector and magnetic vector estimations:

x12 × 1 = K12 × 6 (z1 × 6)T

If magnetic jamming is detected in the current iteration, the magnetic vector error signal
is ignored, and the a posterior error estimate is calculated as:
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x9 × 1 = K(1:9, 1:3 (zg)T

Correct

Estimate Orientation

The orientation estimate is updated by multiplying the previous estimation by the error:

q+ = q− θ+

Estimate Linear Acceleration

The linear acceleration estimation is updated by decaying the linear acceleration
estimation from the previous iteration and subtracting the error:

linAccelPrior = (linAccelPriork− 1)ν− b+

where

• ν –– LinearAcclerationDecayFactor
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Estimate Gyroscope Offset

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from
the gyroscope offset from the previous iteration:

gyroOf f set = gyroOf f setk− 1− a+

Compute Angular Velocity
To estimate angular velocity, the frame of gyroReadings are averaged and the
gyroscope offset computed in the previous iteration is subtracted:

angularVelocity1 × 3 = ∑gyroReadingsN × 3
N − gyroOf f set1 × 3

where N is the decimation factor specified by the DecimationFactor property.

The gyroscope offset estimation is initialized to zeros for the first iteration.

Update Magnetic Vector
If magnetic jamming was not detected in the current iteration, the magnetic vector
estimate, m, is updated using the a posteriori magnetic disturbance error and the a
posteriori orientation.

The magnetic disturbance error is converted to the navigation frame:

mErrorNED1 × 3 = rPost3 × 3
T(mError1 × 3)T T

The magnetic disturbance error in the navigation frame is subtracted from the previous
magnetic vector estimate and then interpreted as inclination:

Μ = m−mErrorNED

inclination = atan2(Μ(3), Μ(1))

The inclination is converted to a constrained magnetic vector estimate for the next
iteration:

m(1) = ExpectedMagneticFieldStrength cos(inclination)
m(2) = 0
m(3) = ExpectedMagneticFieldStrength sin(inclination)
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ExpectedMagneticFieldStrength is a property of ahrsfilter.

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-

Sensor-Fusion/tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten, and P.H. Veltink. "Compensation of
Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body
Segment Orientation." IEEE Transactions on Neural Systems and Rehabilitation
Engineering. Vol. 13. Issue 3, 2005, pp. 395-405.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
ecompass | gpsSensor | imuSensor | imufilter

Introduced in R2018b
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altimeterSensor

Altimeter simulation model

Description
The altimeterSensor System object models receiving data from an altimeter sensor.

To model an altimeter:

1 Create the altimeterSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
altimeter = altimeterSensor
altimeter = altimeterSensor('ReferenceFrame',RF)
altimeter = altimeterSensor( ___ ,Name,Value)

Description
altimeter = altimeterSensor returns an altimeterSensorSystem object that
simulates altimeter readings.

altimeter = altimeterSensor('ReferenceFrame',RF) returns an
altimeterSensor System object that simulates altimeter readings relative to the
reference frame RF. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up).
The default value is 'NED'.
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altimeter = altimeterSensor( ___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

UpdateRate — Update rate of sensor (Hz)
1 (default) | positive scalar

Update rate of sensor in Hz, specified as a positive scalar.
Data Types: single | double

ConstantBias — Constant offset bias (m)
0 (default) | scalar

Constant offset bias in meters, specified as a scalar.

Tunable: Yes
Data Types: single | double

NoiseDensity — Power spectral density of sensor noise (m/√Hz)
0 (default) | nonnegative scalar

Power spectral density of sensor noise in m/√Hz, specified as a nonnegative scalar.

Tunable: Yes
Data Types: single | double

BiasInstability — Instability of bias offset (m)
0 (default) | nonnegative scalar

Instability of the bias offset in meters, specified as a nonnegative scalar.
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Tunable: Yes
Data Types: single | double

DecayFactor — Bias instability noise decay factor
0 (default) | scalar in the range [0,1]

Bias instability noise decay factor, specified as a scalar in the range [0,1]. A decay factor
of 0 models the bias instability noise as a white noise process. A decay factor of 1 models
the bias instability noise as a random walk process.

Tunable: Yes
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global
random number stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar
algorithm with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a
nonnegative integer scalar.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double
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Usage

Syntax
altimeterReadings = altimeter(position)

Description
altimeterReadings = altimeter(position) generates an altimeter sensor altitude
reading from the position input.

Input Arguments
position — Position of sensor in local navigation coordinate system (m)
N-by-3 matrix

Position of sensor in the local navigation coordinate system, specified as an N-by-3 matrix
with elements measured in meters. N is the number of samples in the current frame.
Data Types: single | double

Output Arguments
altimeterReadings — Altitude of sensor relative to local navigation coordinate
system (m)
N-element column vector

Altitude of sensor relative to the local navigation coordinate system in meters, returned
as an N-element column vector. N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Generate Noisy Altimeter Readings from Stationary Input

Create an altimeterSensor System object™ to model receiving altimeter sensor data.
Assume a typical one Hz sample rate and a 10 minute simulation time. Set
ConstantBias to 0.01, NoiseDensity to 0.05, BiasInstability to 0.05, and
DecayFactor to 0.5.

Fs = 1;
duration = 60*10;
numSamples = duration*Fs;

altimeter = altimeterSensor('UpdateRate',Fs, ...
                            'ConstantBias',0.01, ...
                            'NoiseDensity',0.05, ...
                            'BiasInstability',0.05, ...
                            'DecayFactor',0.5);

truePosition = zeros(numSamples,3);

Call altimeter with the specified truePosition to model noisy altimeter readings
from a stationary platform.

altimeterReadings = altimeter(truePosition);

Plot the true position and the altimeter sensor readings for height.

t = (0:(numSamples-1))/Fs;

plot(t,altimeterReadings)
hold on
plot(t,truePosition(:,3),'LineWidth',2)
hold off
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title('Altimeter Readings')
xlabel('Time (s)')
ylabel('Height (m)')
legend('Altimeter Readings','Ground Truth')

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
gpsSensor | imuSensor

Introduced in R2019a
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complementaryFilter
Orientation estimation from a complementary filter

Description
The complementaryFilter System object fuses accelerometer, gyroscope, and
magnetometer sensor data to estimate device orientation and angular velocity.

To estimate orientation using this object:

1 Create the complementaryFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
FUSE = complementaryFilter
FUSE = complementaryFilter('ReferenceFrame',RF)
FUSE = complementaryFilter( ___ ,Name,Value)

Description
FUSE = complementaryFilter returns a complementaryFilter System object,
FUSE, for sensor fusion of accelerometer, gyroscope, and magnetometer data to estimate
device orientation and angular velocity.

FUSE = complementaryFilter('ReferenceFrame',RF) returns a
complementaryFilter System object that fuses accelerometer, gyroscope, and
magnetometer data to estimate device orientation relative to the reference frame RF.
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Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is
'NED'.

FUSE = complementaryFilter( ___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SampleRate — Input sample rate of sensor data (Hz)
100 (default) | positive scalar

Input sample rate of the sensor data in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

AccelerometerGain — Accelerometer gain

0.01 (default) | real scar in [0, 1]

Accelerometer gain, specified as a real scalar in the range of [0, 1]. The gain determines
how much the accelerometer measurement is trusted over the gyroscope measurement
for orientation estimation. This property is tunable.
Data Types: single | double

MagnetometerGain — Magnetometer gain
0.01 (default) | real scar in [0, 1]

Magnetometer gain, specified as a real scalar in the range of [0, 1]. The gain determines
how much the magnetometer measurement is trusted over the gyroscope measurement
for orientation estimation. This property is tunable.
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Data Types: single | double

HasMagnetomter — Enable magnetometer input
true (default) | false

Enable magnetometer input, specified as true or false.
Data Types: logical

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size
of the output depends on the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

N is the number of samples.
Data Types: char | string

Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,
magReadings)
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings)

Description
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,
magReadings) fuses accelerometer, gyroscope, and magnetometer data to compute
orientation and angular velocity. To use this syntax, set the HasMagnetometer property
as true.

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings) fuses
accelerometer and gyroscope data to compute orientation and angular velocity. To use
this syntax, set the HasMagnetometer property as false.

 complementaryFilter

2-73



Input Arguments
accelReadings — Accelerometer readings in sensor body coordinate system
(m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-
by-3 matrix. N is the number of samples, and the three columns of accelReadings
represent the [x y z] measurements. Accelerometer readings are assumed to correspond
to the sample rate specified by the SampleRate property. In the filter, the gravity
constant g is assumed to be 9.81 m/s2.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3
matrix. N is the number of samples, and the three columns of gyroReadings represent
the [x y z] measurements. Gyroscope readings are assumed to correspond to the sample
rate specified by the SampleRate property.
Data Types: single | double

magReadings — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix

Magnetometer readings in the sensor body coordinate system in µT, specified as an N-
by-3 matrix. N is the number of samples, and the three columns of magReadings
represent the [x y z] measurements. Magnetometer readings are assumed to correspond
to the sample rate specified by the SampleRate property.
Data Types: single | double

Output Arguments
orientation — Orientation that rotates quantities from local navigation
coordinate system to sensor body coordinate system
N-by-1 array of quaternions (default) | 3-by-3-by-N array

Orientation that rotates quantities from the local navigation coordinate system to the
body coordinate system, returned as quaternions or an array. The size and type of
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orientation depends on whether the OrienationFormat property is set to
'quaternion' or 'Rotation matrix':

• 'quaternion' –– the output is an N-by-1 vector of quaternions, where N is the
number of samples.

• 'Rotation matrix' –– the output is a 3-by-3-by-N array of rotation matrices, where
N is the number of samples.

Data Types: quaternion | single | double

angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
N-by-3 array (default)

Angular velocity expressed in the sensor body coordinate system in rad/s, returned as an
N-by-3 array, where N is the number of samples.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
clone Create duplicate System object
isLocked Determine if System object is in use

Examples

Estimate Orientation from Recorded IMU Data

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and
magnetometer sensor data from a device oscillating in pitch (around y-axis), then yaw
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(around z-axis), and then roll (around x-axis). The file also contains the sample rate of the
recording.

ld = load('rpy_9axis.mat');
accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
mag = ld.sensorData.MagneticField;

Create a complementary filter object with sample rate equal to the frequency of the data.

Fs  = ld.Fs;  % Hz
fuse = complementaryFilter('SampleRate', Fs);

Fuse accelerometer, gyroscope, and magnetometer data using the filter.

q = fuse(accel, gyro, mag);

Visualize the results.

plot(eulerd( q, 'ZYX', 'frame'));
title('Orientation Estimate');
legend('Z-rotation', 'Y-rotation', 'X-rotation');
ylabel('Degrees');
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References
[1] Valenti, R., I. Dryanovski, and J. Xiao. "Keeping a good attitude: A quaternion-based

orientation filter for IMUs and MARGs." Sensors. Vol. 15, Number 8, 2015, pp.
19302-19330.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | imufilter

Introduced in R2019b
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insfilterAsync
Estimate pose from asynchronous MARG and GPS data

Description
The insfilterAsync object implements sensor fusion of MARG and GPS data to
estimate pose in the NED (or ENU) reference frame. MARG (magnetic, angular rate,
gravity) data is typically derived from magnetometer, gyroscope, and accelerometer data,
respectively. The filter uses a 28-element state vector to track the orientation
quaternion, velocity, position, MARG sensor biases, and geomagnetic vector. The
insfilterAsync object uses a continuous-discrete extended Kalman filter to estimate
these quantities.

Creation

Syntax
filter = insfilterAsync
filter = insfilterAsync('ReferenceFrame',RF)
filter = insfilterAsync( ___ ,Name,Value)

Description
filter = insfilterAsync creates an insiflterAsync object to fuse asynchronous
MARG and GPS data with default property values.

filter = insfilterAsync('ReferenceFrame',RF) allows you to specify the
reference frame, RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU'
(East-North-Up). The default value is 'NED'.

filter = insfilterAsync( ___ ,Name,Value) also allows you set properties of the
created filter using one or more name-value pairs. Enclose each property name in
single quotes.
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Properties
ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | three-element positive row vector

Reference location, specified as a three-element row vector in geodetic coordinates
(latitude, longitude, and altitude). Altitude is the height above the reference ellipsoid
model, WGS84. The reference location units are [degrees degrees meters].
Data Types: single | double

QuaternionNoise — Additive quaternion process noise variance
[1e-6 1e-6 1e-6 1e-6] (default) | scalar | four-element row vector

Additive quaternion process noise variance, specified as a scalar or four-element vector of
quaternion parts.
Data Types: single | double

AngularVelocityNoise — Additive angular velocity process noise in local
navigation coordinate system ((rad/s)2)
[0.005 0.005 0.005] (default) | scalar | three-element row vector

Additive angular velocity process noise in the local navigation coordinate system in
(rad/s)2, specified as a scalar or three-element row vector of positive real finite numbers.

• If AngularVelocityNoise is a row vector, the elements correspond to the noise in
the x, y, and z axes of the local navigation coordinate system, respectively.

• If AngularVelocityNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

PositionNoise — Additive position process noise variance in local navigation
coordinate system (m2)
[1e-6 1e-6 1e-6] (default) | scalar | three-element row vector

Additive position process noise in the local navigation coordinate system in m2, specified
as a scalar or three-element row vector of positive real finite numbers.

• If PositionNoise is a row vector, the elements correspond to the noise in the x, y,
and z axes of the local navigation coordinate system, respectively.

• If PositionNoise is a scalar, the single element is applied to each axis.
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Data Types: single | double

VelocityNoise — Additive velocity process noise variance in local navigation
coordinate system ((m/s)2)
[1e-6 1e-6 1e-6] (default) | scalar | three-element row vector

Additive velocity process noise in the local navigation coordinate system in (m/s)2,
specified as a scalar or three-element row vector of positive real finite numbers.

• If VelocityNoise is a row vector, the elements correspond to the noise in the x, y,
and z axes of the local navigation coordinate system, respectively.

• If VelocityNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerationNoise — Additive acceleration process noise variance in local
navigation coordinate system ((m/s2)2)
[50 50 50] (default) | scalar | three-element row vector

Additive acceleration process noise in (m/s2)2, specified as a scalar or three-element row
vector of positive real finite numbers.

• If AccelerationNoise is a row vector, the elements correspond to the noise in the x,
y, and z axes of the local navigation coordinate system, respectively.

• If AccelerationNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

GyroscopeBiasNoise — Additive process noise variance from gyroscope bias
((rad/s)2)
[1e-10 1e-10 1e-10] (default) | scalar | three-element row vector

Additive process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar
or three-element row vector of positive real finite numbers.

• If GyroscopeBiasNoise is a row vector, the elements correspond to the noise in the
x, y, and z axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is a scalar, the single element is applied to each axis.

Data Types: single | double
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AccelerometerBiasNoise — Additive process noise variance from accelerometer
bias ((m/s2)2)
[1e-4 1e-4 1e-4] (default) | positive scalar | three-element row vector

Additive process noise variance from accelerometer bias in (m/s2)2, specified as a scalar
or three-element row vector of positive real numbers.

• If AccelerometerBiasNoise is a row vector, the elements correspond to the noise in
the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is a scalar, the single element is applied to each axis.

GeomagneticVectorNoise — Additive process noise variance of geomagnetic
vector in local navigation coordinate system (μT2)
[1e-6 1e-6 1e-6] (default) | positive scalar | three-element row vector

Additive process noise variance of geomagnetic vector in μT2, specified as a scalar or
three-element row vector of positive real numbers.

• If GeomagneticVectorNoise is a row vector, the elements correspond to the noise in
the x, y, and z axes of the local navigation coordinate system, respectively.

• If GeomagneticVectorNoise is a scalar, the single element is applied to each axis.

MagnetometerBiasNoise — Additive process noise variance from magnetometer
bias (μT2)
[0.1 0.1 0.1] (default) | positive scalar | three-element row vector

Additive process noise variance from magnetometer bias in μT2, specified as a scalar or
three-element row vector of positive real numbers.

• If MagnetometerBiasNoise is a row vector, the elements correspond to the noise in
the x, y, and z axes of the magnetometer, respectively.

• If MagnetometerBiasNoise is a scalar, the single element is applied to each axis.

State — State vector of extended Kalman filter
28-element column vector

State vector of the extended Kalman filter. The state values represent:
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State Units Index
Orientation (quaternion
parts)

N/A 1:4

Angular Velocity (XYZ) rad/s 5:7
Position (NED or ENU) m 8:10
Velocity (NED or ENU) m/s 11:13
Acceleration (NED or ENU) m/s2 14:16
Accelerometer Bias (XYZ) m/s2 17:19
Gyroscope Bias (XYZ) rad/s 20:22
Geomagnetic Field Vector
(NED or ENU)

μT 23:25

Magnetometer Bias (XYZ) μT 26:28

The default initial state corresponds to an object at rest located at [0 0 0] in geodetic
LLA coordinates.
Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(28) (default) | 28-by-28 matrix

State error covariance for the extended Kalman filter, specified as a 28-by-28-element
matrix of real numbers.
Data Types: single | double

Object Functions
predict Update states based on motion model
fuseaccel Correct states using accelerometer data
fusegyro Correct states using gyroscope data
fusemag Correct states using magnetometer data
fusegps Correct states using GPS data
correct Correct states using direct state measurements
pose Current position, orientation, and velocity estimate
reset Reset internal states
stateinfo Display state vector information
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Examples

Estimate Pose of UAV

Load logged sensor data and ground truth pose.

load('uavshort.mat','refloc','initstate','imuFs', ...
    'accel','gyro','mag','lla','gpsvel', ...
    'trueOrient','truePos')

Create an INS filter to fuse asynchronous MARG and GPS data to estimate pose.

filt = insfilterAsync;
filt.ReferenceLocation = refloc;
filt.State = [initstate(1:4);0;0;0;initstate(5:10);0;0;0;initstate(11:end)];

Define sensor measurement noises. The noises were determined from datasheets and
experimentation.

Rmag  = 80;
Rvel  = 0.0464;
Racc  = 800;
Rgyro = 1e-4;
Rpos  = 34;

Preallocate variables for position and orientation. Allocate a variable for indexing into the
GPS data.

N = size(accel,1);
p = zeros(N,3);
q = zeros(N,1,'quaternion');

gpsIdx = 1;

Fuse accelerometer, gyroscope, magnetometer, and GPS data. The outer loop predicts the
filter forward one time step and fuses accelerometer and gyroscope data at the IMU
sample rate.

for ii = 1:N
    
    % Predict the filter forward one time step
    predict(filt,1./imuFs);
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    % Fuse accelerometer and gyroscope readings
    fuseaccel(filt,accel(ii,:),Racc);
    fusegyro(filt,gyro(ii,:),Rgyro);
    
    % Fuse magnetometer at 1/2 the IMU rate
    if ~mod(ii, fix(imuFs/2))
        fusemag(filt,mag(ii,:),Rmag);
    end
    
    % Fuse GPS once per second
    if ~mod(ii,imuFs)
        fusegps(filt,lla(gpsIdx,:),Rpos,gpsvel(gpsIdx,:),Rvel);
        gpsIdx = gpsIdx + 1;
    end
    
    % Log the current pose estimate
    [p(ii,:),q(ii)] = pose(filt);
    
end

Calculate the RMS errors between the known true position and orientation and the output
from the asynchronous IMU filter.

posErr = truePos - p;
qErr = rad2deg(dist(trueOrient,q));

pRMS = sqrt(mean(posErr.^2));
qRMS = sqrt(mean(qErr.^2));

fprintf('Position RMS Error\n');

Position RMS Error

fprintf('\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

    X: 0.55, Y: 0.71, Z: 0.74 (meters)

fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n', qRMS);

    4.72 (degrees)
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Visualize the true position and the estimated position.

plot3(truePos(:,1),truePos(:,2),truePos(:,3),'LineWidth',2)
hold on
plot3(p(:,1),p(:,2),p(:,3),'r:','LineWidth',2)
grid on
xlabel('N (m)')
ylabel('E (m)')
zlabel('D (m)')
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Algorithms

Dynamic Model Used in insfilterAsync
Note: The following algorithm only applies to an NED reference frame.

insfilterAsync implements a 28-axis continuous-discrete extended Kalman filter using
sequential fusion. The filter relies on the assumption that individual sensor measurements
are uncorrelated. The filter uses an omnidirectional motion model and assumes constant
angular velocity and constant acceleration. The state is defined as:
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x =

q0
q1
q2
q3

angVelX
angVelY
angVelZ
positionN
positionE
positionD

νN
νE
νD

accelN
accelE
accelD

accelbiasX
accelbiasY
accelbiasZ
gyrobiasX
gyrobiasY
gyrobiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ
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where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents
a frame rotation from the platform's current orientation to the local NED coordinate
system.

• angVelX, angVelY, angVelZ –– Angular velocity relative to the platform's body frame.
• positionN, positionE, positionD –– Position of the platform in the local NED coordinate

system.
• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
• accelN, accelE, accelD –– Acceleration of the platform in the local NED coordinate

system.
• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.
• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
• geomagneticFieldVectorN, geomagneticFieldVectorE, geomagneticFieldVectorD ––

Estimate of the geomagnetic field vector at the reference location.
• magbiasX, magbiasY, magbiasZ –– Bias in the magnetometer readings.

Given the conventional formation of the process equation, ẋ = f x + w, w is the process
noise, ẋ is the derivative of x, and:
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f x =

− q1 angVelX − q2 angVelY − q3 angVelZ
2

q0 angVelX − q3 angVelY + q1 angVelZ
2

q3 angVelX + q0 angVelY − q1 angVelZ
2

q1 angVelX − q2 angVelY + q0 angVelZ
2
0
0
0
νN
νE
νD

accelN
accelE
accelD

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilterMARG | insfilterNonholonomic

Introduced in R2019a
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correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and
state estimation error covariance based on the measurement and measurement
covariance. The measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1, 28]

State vector index of measurement to correct, specified as an N-element vector of
increasing integers in the range [1, 28].

The state values represent:

State Units Index
Orientation (quaternion
parts)

N/A 1:4

Angular Velocity (XYZ) rad/s 5:7
Position (NED) m 8:10
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State Units Index
Velocity (NED) m/s 11:13
Acceleration (NED) m/s2 14:16
Accelerometer Bias (XYZ) m/s2 17:19
Gyroscope Bias (XYZ) rad/s 20:22
Geomagnetic Field Vector
(NED)

μT 23:25

Magnetometer Bias (XYZ) μT 26:28

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as an N-element vector. N is the number of
elements of the index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N
is the number of elements of the index argument, idx.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync
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Introduced in R2019a
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fuseaccel
Correct states using accelerometer data

Syntax
fuseaccel(FUSE,acceleration,accelerationCovariance)

Description
fuseaccel(FUSE,acceleration,accelerationCovariance) fuses accelerometer
data to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

acceleration — Accelerometer readings in local sensor body coordinate system
(m/s2)
3-element row vector

Accelerometer readings in local sensor body coordinate system in m/s2, specified as a 3-
element row vector
Data Types: single | double

accelerationCovariance — Acceleration error covariance of accelerometer
measurement ((m/s2)2)
scalar | 3-element row vector | 3-by-3 matrix

Acceleration error covariance of the accelerometer measurement in (m/s2)2, specified as a
scalar, 3-element row vector, or 3-by-3 matrix.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a
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fusegps
Correct states using GPS data

Syntax
fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS data to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a
real finite 3-element row vector. Latitude and longitude are in degrees with north and
east being positive. Altitude is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double
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velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-
element row vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

Velocity measurement covariance of the GPS receiver in the local NED coordinate system
in m/s2, specified as a 3-by-3 matrix.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a
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fusegyro
Correct states using gyroscope data

Syntax
fusegyro(FUSE,gyroReadings,gyroCovariance)

Description
fusegyro(FUSE,gyroReadings,gyroCovariance) fuses gyroscope data to correct
the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

gyroReadings — Gyroscope readings in local sensor body coordinate system
(rad/s)
3-element row vector

Gyroscope readings in local sensor body coordinate system in rad/s, specified as a 3-
element row vector.
Data Types: single | double

gyroCovariance — Covariance of gyroscope measurement error ((rad/s)2)
scalar | 3-element row vector | 3-by-3 matrix

Covariance of gyroscope measurement error in (rad/s)2, specified as a scalar, 3-element
row vector, or 3-by-3 matrix.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a
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fusemag
Correct states using magnetometer data

Syntax
fusemag(FUSE,magReadings,magReadingsCovariance)

Description
fusemag(FUSE,magReadings,magReadingsCovariance) fuses magnetometer data
to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row
vector, or 3-by-3 matrix.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a
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pose
Current position, orientation, and velocity estimate

Syntax
[position,orientation,velocity] = pose(FUSE)
[position,orientation,velocity] = pose(FUSE,format)

Description
[position,orientation,velocity] = pose(FUSE) returns the current estimate of
the pose.

[position,orientation,velocity] = pose(FUSE,format) returns the current
estimate of the pose with orientation in the specified orientation format.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or
'rotmat' for a rotation matrix.
Data Types: char | string
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Output Arguments
position — Position estimate in the local NED coordinate system (m)
3-element row vector

Position estimate in the local NED coordinate system in meters, returned as a 3-element
row vector.
Data Types: single | double

orientation — Orientation estimate in the local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, returned as a scalar quaternion
or 3-by-3 rotation matrix, depending on the specified orientation format. The quaternion
or rotation matrix represents a frame rotation from the local NED reference frame to the
body reference frame.
Data Types: single | double | quaternion

velocity — Velocity estimate in the local NED coordinate system (m/s)
3-element row vector

Velocity estimate in the local NED coordinate system in m/s, returned as a 3-element row
vector.
Data Types: single | double | quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync
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Introduced in R2019a
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predict
Update states based on motion model

Syntax
predict(FUSE,dt)

Description
predict(FUSE,dt) updates states based on the motion model.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

dt — Delta time to propagate forward (s)
scalar

Delta time to propagate forward in seconds, specified as a positive scalar.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Classes — Alphabetical List

2-106



See Also
insfilter | insfilterAsync

Introduced in R2019a
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reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State and StateCovariance properties of the
insfilterAsync object to their default values.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a
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stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property of the
insfilterAsync object and the associated units.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a
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binaryOccupancyMap
Create occupancy grid with binary values

Description
The binaryOccupancyMap creates a 2-D occupancy map object, which you can use to
represent and visualize a robot workspace, including obstacles. The integration of sensor
data and position estimates create a spatial representation of the approximate locations
of the obstacles.

Occupancy grids are used in robotics algorithms such as path planning. They are also
used in mapping applications, such as for finding collision-free paths, performing collision
avoidance, and calculating localization. You can modify your occupancy grid to fit your
specific application.

Each cell in the occupancy grid has a value representing the occupancy status of that cell.
An occupied location is represented as true (1) and a free location is represented as
false (0).

The object keeps track of three reference frames: world, local, and, grid. The world frame
origin is defined by GridLocationInWorld, which defines the bottom-left corner of the
map relative to the world frame. The LocalOriginInWorld property specifies the
location of the origin of the local frame relative to the world frame. The first grid location
with index (1,1) begins in the top-left corner of the grid.

Note This object was previously named robotics.BinaryOccupancyGrid.

Creation

Syntax
map = binaryOccupancyMap
map = binaryOccupancyMap(width,height)
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map = binaryOccupancyMap(width,height,resolution)

map = binaryOccupancyMap(rows,cols,resolution,"grid")

map = binaryOccupancyMap(p)
map = binaryOccupancyMap(p,resolution)
map = binaryOccupancyMap(p,resolution)

map = binaryOccupancyMap(sourcemap)
map = binaryOccupancyMap(sourcemap,resolution)

Description
map = binaryOccupancyMap creates a 2-D binary occupancy grid with a width and
height of 10m. The default grid resolution is one cell per meter.

map = binaryOccupancyMap(width,height) creates a 2-D binary occupancy grid
representing a work space of width and height in meters. The default grid resolution is
one cell per meter.

map = binaryOccupancyMap(width,height,resolution) creates a grid with the
Resolution property specified in cells per meter. The map is in world coordinates by
default.

map = binaryOccupancyMap(rows,cols,resolution,"grid") creates a 2-D
binary occupancy grid of size (rows,cols).

map = binaryOccupancyMap(p) creates a grid from the values in matrix p. The size of
the grid matches the size of the matrix, with each cell value interpreted from its location
in the matrix. p contains any numeric or logical type with zeros (0) and ones (1).

map = binaryOccupancyMap(p,resolution) creates a map from a matrix with the
Resolution property specified in cells per meter.

map = binaryOccupancyMap(p,resolution) creates an object with the Resolution
proeprty specified in cells per meter.

map = binaryOccupancyMap(sourcemap) creates an object using values from
another binaryOccupancyMap object.
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map = binaryOccupancyMap(sourcemap,resolution) creates an object using
values from another binaryOccupancyMap object, but resamples the matrix to have the
specified resolution.

Input Arguments
width — Map width
positive scalar

Map width, specified as a positive scalar in meters.

height — Map height
positive scalar

Map height, specified as a positive scalar in meters.

p — Map grid values
matrix

Map grid values, specified as a matrix.

sourcemap — Occupancy map object
binaryOccupancyMap object

Occupancy map object, specified as a binaryOccupancyMap object.

Properties
GridSize — Number of rows and columns in grid
two-element horizontal vector

This property is read-only.

Number of rows and columns in grid, stored as a two-element horizontal vector of the
form [rows cols].

Resolution — Grid resolution
1 (default) | scalar in cells per meter

This property is read-only.
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Grid resolution, stored as a scalar in cells per meter.

XLocalLimits — Minimum and maximum values of x-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of x-coordinates in local frame, stored as a two-element
horizontal vector of the form [min max]. Local frame is defined by
LocalOriginInWorld property.

YLocalLimits — Minimum and maximum values of y-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of y-coordinates in local frame, stored as a two-element
horizontal vector of the form [min max]. Local frame is defined by
LocalOriginInWorld property.

XWorldLimits — Minimum and maximum values of x-coordinates in world frame
two-element vector

This property is read-only.

Minimum and maximum values of x-coordinates in world frame, stored as a two-element
horizontal vector of the form [min max]. These values indicate the world range of the x-
coordinates in the grid.

YWorldLimits — Minimum and maximum values of y-coordinates
two-element vector

This property is read-only.

Minimum and maximum values of y-coordinates, stored as a two-element vector of the
form [min max]. These values indicate the world range of the y-coordinates in the grid.

GridLocationInWorld — Location of the grid in world coordinates
[0 0] (default) | two-element vector | [xGrid yGrid]

Location of the bottom-left corner of the grid in world coordinates, specified as a two-
element vector, [xGrid yGrid].
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LocalOriginInWorld — Location of the local frame in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the origin of the local frame in world coordinates, specified as a two-element
vector, [xLocal yLocal]. Use the move function to shift the local frame as your vehicle
moves.

GridOriginInLocal — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xLocal yLocal]

Location of the bottom-left corner of the grid in local coordinates, specified as a two-
element vector, [xLocal yLocal].

DefaultValue — Default value for unspecified map locations
0 (default) | 1

Default value for unspecified map locations including areas outside the map, specified as
0 or 1.

Object Functions
checkOccupancy Check occupancy values for locations
getOccupancy Get occupancy value of locations
grid2local Convert grid indices to local coordinates
grid2world Convert grid indices to world coordinates
inflate Inflate each occupied grid location
insertRay Insert ray from laser scan observation
local2grid Convert local coordinates to grid indices
local2world Convert local coordinates to world coordinates
move Move map in world frame
occupancyMatrix Convert occupancy grid to matrix
raycast Compute cell indices along a ray
rayIntersection Find intersection points of rays and occupied map cells
setOccupancy Set occupancy value of locations
show Show occupancy grid values
syncWith Sync map with overlapping map
world2grid Convert world coordinates to grid indices
world2local Convert world coordinates to local coordinates
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Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)
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Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Image to Binary Occupancy Grid Example

This example shows how to convert an image to a binary occupancy grid for using with
mapping and path planning.

Import image.

image = imread('imageMap.png');

Convert to grayscale and then black and white image based on given threshold value.
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grayimage = rgb2gray(image);
bwimage = grayimage < 0.5;

Use black and white image as matrix input for binary occupancy grid.

grid = binaryOccupancyMap(bwimage);

show(grid)
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Convert PGM Image to Map

This example shows how to convert a .pgm file into a binaryOccupancyMap object for
use in MATLAB.

Import image using imread. The image is quite large and should be cropped to the
relevant area.

image = imread('playpen_map.pgm');
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)
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Unknown areas (gray) should be removed and treated as free space. Create a logical
matrix based on a threshold. Depending on your image, this value could be different.
Occupied space should be set as 1 (white in image).
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imageBW = imageCropped < 100;
imshow(imageBW)

Create binaryOccupancyMap object using adjusted map image.
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map = binaryOccupancyMap(imageBW);
show(map)
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Compatibility Considerations

binaryOccupancyMap was renamed
Behavior change in future release

The binaryOccupancyMap object was renamed from
robotics.BinaryOccupancyGrid. Use binaryOccupancyMap for all object creation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
controllerPurePursuit

Topics
“Occupancy Grids”

Introduced in R2015a
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checkOccupancy
Check occupancy values for locations

Syntax
occVal = checkOccupancy(map,xy)
occVal = checkOccupancy(map,xy,"local")
occVal = checkOccupancy(map,ij,"grid")
[occVal,validPts] = checkOccupancy( ___ )

occMatrix = checkOccupancy(map)
occMatrix = checkOccupancy(map,bottomLeft,matSize)
occMatrix = checkOccupancy(map,bottomLeft,matSize,"local")
occMatrix = checkOccupancy(map,topLeft,matSize,"grid")

Description
occVal = checkOccupancy(map,xy) returns an array of occupancy values at the xy
locations in the world frame. Obstacle-free cells return 0, occupied cells return 1.
Unknown locations, including outside the map, return -1.

occVal = checkOccupancy(map,xy,"local") returns an array of occupancy values
at the xy locations in the local frame. The local frame is based on the
LocalOriginInWorld property of the map.

occVal = checkOccupancy(map,ij,"grid") specifies ij grid cell indices instead of
xy locations. Grid indices start at (1,1) from the top left corner.

[occVal,validPts] = checkOccupancy( ___ ) also outputs an n-element vector of
logical values indicating whether input coordinates are within the map limits.

occMatrix = checkOccupancy(map) returns a matrix that contains the occupancy
status of each location. Obstacle-free cells return 0, occupied cells return 1. Unknown
locations, including outside the map, return -1.
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occMatrix = checkOccupancy(map,bottomLeft,matSize) returns a matrix of
occupancy values by specifying the bottom-left corner location in world coordinates and
the matrix size in meters.

occMatrix = checkOccupancy(map,bottomLeft,matSize,"local") returns a
matrix of occupancy values by specifying the bottom-left corner location in local
coordinates and the matrix size in meters.

occMatrix = checkOccupancy(map,topLeft,matSize,"grid") returns a matrix
of occupancy values by specifying the top-left cell index in grid coordinates and the
matrix size.

Examples

Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and
free thresholds of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = zeros(20,20);
p(11:20,11:20) = ones(10,10);
map = binaryOccupancyMap(p,10);
show(map)
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Get the occupancy of different locations and check their occupancy statuses. The
occupancy status returns 0 for free space and 1 for occupied space. Unknown values
return –1.

pocc = getOccupancy(map,[1.5 1]);
occupied = checkOccupancy(map,[1.5 1]);
pocc2 = getOccupancy(map,[5 5],'grid');

Input Arguments
map — Map representation
binaryOccupancyMap object
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Map representation, specified as a binaryOccupancyMap object.

xy — Coordinates in the map
n-by-2 matrix

Coordinates in the map, specified as an n-by-2 matrix of [x y] pairs, where n is the
number of coordinates. Coordinates can be world or local coordinates depending on the
syntax.
Data Types: double

ij — Grid locations in the map
n-by-2 matrix

Grid locations in the map, specified as an n-by-2 matrix of [i j] pairs, where n is the
number of locations. Grid locations are given as [row col].
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as
a two-element vector, [xCoord yCoord]. Location is in world or local coordinates based
on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength], or
[gridRow gridCol]. Size is in world, local, or grid coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double
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Output Arguments
occVal — Occupancy values
n-by-1 column vector

Occupancy values, returned as an n-by-1 column vector equal in length to xy or ij input.
Occupancy values can be obstacle free (0), occupied (1), or unknown (-1).

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij.
Locations inside the map return a value of 1. Locations outside the map limits return a
value of 0.

occMatrix — Matrix of occupancy values
matrix

Matrix of occupancy values, returned as matrix with size equal to matSize or the size of
your map. Occupancy values can be obstacle free (0), occupied (1), or unknown (-1).

See Also
binaryOccupancyMap | getOccupancy | occupancyMap

Introduced in R2019b
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getOccupancy
Get occupancy value of locations

Syntax
occVal = getOccupancy(map,xy)
occVal = getOccupancy(map,xy,"local")
occVal = getOccupancy(map,ij,"grid")
[occVal,validPts] = getOccupancy( ___ )

occMatrix = getOccupancy(map)
occMatrix = getOccupancy(map,bottomLeft,matSize)
occMatrix = getOccupancy(map,bottomLeft,matSize,"local")
occMatrix = getOccupancy(map,topLeft,matSize,"grid")

Description
occVal = getOccupancy(map,xy) returns an array of occupancy values at the xy
locations in the world frame. Unknown locations, including outside the map, return
map.DefaultValue.

occVal = getOccupancy(map,xy,"local") returns an array of occupancy values at
the xy locations in the local frame.

occVal = getOccupancy(map,ij,"grid") specifies ij grid cell indices instead of xy
locations.

[occVal,validPts] = getOccupancy( ___ ) additionally outputs an n-element
vector of logical values indicating whether input coordinates are within the map limits.

occMatrix = getOccupancy(map) returns all occupancy values in the map as a
matrix.

occMatrix = getOccupancy(map,bottomLeft,matSize) returns a matrix of
occupancy values by specifying the bottom-left corner location in world coordinates and
the matrix size in meters.
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occMatrix = getOccupancy(map,bottomLeft,matSize,"local") returns a
matrix of occupancy values by specifying the bottom-left corner location in local
coordinates and the matrix size in meters.

occMatrix = getOccupancy(map,topLeft,matSize,"grid") returns a matrix of
occupancy values by specifying the top-left cell index in grid indices and the matrix size.

Examples

Insert Laser Scans into Binary Occupancy Map

Create an empty binary occupancy grid map.

map = binaryOccupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)
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Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = logical
   1

Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and
free thresholds of the occupancyMap object.
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Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = zeros(20,20);
p(11:20,11:20) = ones(10,10);
map = binaryOccupancyMap(p,10);
show(map)

Get the occupancy of different locations and check their occupancy statuses. The
occupancy status returns 0 for free space and 1 for occupied space. Unknown values
return –1.

pocc = getOccupancy(map,[1.5 1]);
occupied = checkOccupancy(map,[1.5 1]);
pocc2 = getOccupancy(map,[5 5],'grid');
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the vehicle.

xy — Coordinates in the map
n-by-2 matrix

Coordinates in the map, specified as an n-by-2 matrix of [x y] pairs, where n is the
number of coordinates. Coordinates can be world or local coordinates depending on the
syntax.
Data Types: double

ij — Grid locations in the map
n-by-2 matrix

Grid locations in the map, specified as an n-by-2 matrix of [i j] pairs, where n is the
number of locations. Grid locations are given as [row col].
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as
a two-element vector, [xCoord yCoord]. Location is in world or local coordinates based
on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength] or
[gridRow gridCol]. The size is in world coordinates, local coordinates, or grid indices
based on syntax.
Data Types: double
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topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
occVal — Occupancy values
n-by-1 column vector

Occupancy values, returned as an n-by-1 column vector equal in length to xy or ij.
Occupancy values can be obstacle free (0) or occupied (1).

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij.
Locations inside the map return a value of 1. Locations outside the map limits return a
value of 0.

occMatrix — Matrix of occupancy values
matrix

Matrix of occupancy values, returned as matrix with size equal to matSize or the size of
map.

See Also
binaryOccupancyMap | setOccupancy

Topics
“Occupancy Grids”

Introduced in R2015a
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grid2local
Convert grid indices to local coordinates

Syntax
xy = grid2local(map,ij)

Description
xy = grid2local(map,ij) converts a [row col] array of grid indices, ij, to an
array of local coordinates, xy.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the robot. The object contains a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

Output Arguments
xy — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of local coordinates.
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See Also
binaryOccupancyMap | world2grid

Introduced in R2019b

 grid2local

2-137



grid2world
Convert grid indices to world coordinates

Syntax
xy = grid2world(map,ij)

Description
xy = grid2world(map,ij) converts a [row col] array of grid indices, ij, to an
array of world coordinates, xy.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the robot. The object contains a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

Output Arguments
xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.
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See Also
binaryOccupancyMap | grid2local | world2grid

Introduced in R2015a
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inflate
Inflate each occupied grid location

Syntax
inflate(map,radius)
inflate(map,gridradius,'grid')

Description
inflate(map,radius) inflates each occupied position of the map by the radius given in
meters. radius is rounded up to the nearest cell equivalent based on the resolution of
the map. Every cell within the radius is set to true (1).

inflate(map,gridradius,'grid') inflates each occupied position by the radius
given in number of cells.

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)
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Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the robot. The object contains a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

radius — Dimension the defines how much to inflate occupied locations
scalar
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Dimension that defines how much to inflate occupied locations, specified as a scalar.
radius is rounded up to the nearest cell value.
Data Types: double

gridradius — Dimension the defines how much to inflate occupied locations
positive scalar

Dimension that defines how much to inflate occupied locations, specified as a positive
scalar. gridradius is the number of cells to inflate the occupied locations.
Data Types: double

See Also
binaryOccupancyMap | setOccupancy

Topics
“Occupancy Grids”

Introduced in R2015a
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insertRay
Insert ray from laser scan observation

Syntax
insertRay(map,pose,scan,maxrange)
insertRay(map,pose,ranges,angles,maxrange)
insertRay(map,startpt,endpoints)

Description
insertRay(map,pose,scan,maxrange) inserts one or more lidar scan sensor
observations in the occupancy grid, map, using the input lidarScan object, scan, to get
ray endpoints. End point locations are updated with an occupied value. If the ranges are
above maxrange, the ray endpoints are considered free space. All other points along the
ray are treated as obstacle-free.

insertRay(map,pose,ranges,angles,maxrange) specifies the range readings as
vectors defined by the input ranges and angles.

insertRay(map,startpt,endpoints) inserts observations between the line segments
from the start point to the end points. The endpoints are updated are occupied space and
other points along the line segments are updated as free space.

Examples

Insert Laser Scans into Binary Occupancy Map

Create an empty binary occupancy grid map.

map = binaryOccupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.
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pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)
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Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = logical
   1

Input Arguments
map — Map representation
binaryOccupancyMap object
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Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the robot. The object contains a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

pose — Position and orientation of vehicle
three-element vector

Position and orientation of vehicle, specified as an [x y theta] vector. The vehicle pose
is an x and y position with angular orientation theta (in radians) measured from the x-
axis.

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector of elements measured in meters. These
range values are distances from a sensor at given angles. The vector must be the same
length as the corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector of elements measured in radians. These
angle values correspond to the given ranges. The vector must be the same length as the
corresponding ranges vector.

maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values
greater than or equal to maxrange are considered free along the whole length of the ray,
up to maxrange.

startpt — Start point for rays
two-element vector

Start point for rays, specified as a two-element vector, [x y], in the world coordinate
frame. All rays are line segments that originate at this point.
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endpoints — Endpoints for rays
n-by-2 matrix

Endpoints for rays, specified as an n-by-2 matrix of [x y] pairs in the world coordinate
frame, where n is the length of ranges or angles. All rays are line segments that
originate at startpt.

See Also
binaryOccupancyMap | lidarScan | lidarScan | occupancyMap

Topics
“Occupancy Grids” (Robotics System Toolbox)

Introduced in R2019b
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local2grid
Convert local coordinates to grid indices

Syntax
ij = local2grid(map,xy)

Description
ij = local2grid(map,xy) converts an array of local coordinates, xy, to an array of
grid indices, ij in [row col] format.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the vehicle.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
local coordinates.
Data Types: double

Output Arguments
ij — Grid positions
n-by-2 matrix
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Grid positions, returned as an n-by-2 matrix of [i j] pairs in [row col] format, where
n is the number of grid positions. The grid cell locations are counted from the top left
corner of the grid.
Data Types: double

See Also
binaryOccupancyMap | grid2world | grid2world | occupancyMap

Topics
“Occupancy Grids”

Introduced in R2019b
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local2world
Convert local coordinates to world coordinates

Syntax
xyWorld = local2world(map,xy)

Description
xyWorld = local2world(map,xy) converts an array of local coordinates to world
coordinates.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the vehicle.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
local coordinates.
Data Types: double

Output Arguments
xyWorld — World coordinates
n-by-2 matrix
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World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

See Also

Topics
“Occupancy Grids”

Introduced in R2019b
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move
Move map in world frame

Syntax
move(map,moveValue)
move(map,moveValue,Name,Value)

Description
move(map,moveValue) moves the local origin of the map to an absolute location,
moveValue, in the world frame, and updates the map limits. Move values are truncated
based on the resolution of the map. By default, newly revealed regions are set to
map.DefaultValue.

move(map,moveValue,Name,Value) specifies additional options specified by one or
more name-value pair arguments.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world
map. This process emulates a vehicle driving in an environment and getting updates on
obstacles in the new areas.

Load example maps. Create a binary occupancy map from the complexMap.

load exampleMaps.mat
map = binaryOccupancyMap(complexMap);
show(map)
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Create a smaller local map.

mapLocal = binaryOccupancyMap(complexMap(end-20:end,1:20));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local
frame.

Specify path locations and plot on the map.

path = [5 2
        8 2
        8 8
        30 8];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference
between points by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
        pause(0.2)
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    end
end

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the vehicle.
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moveValue — Local map origin move value
[x y] vector

Local map origin move value, specified as an [x y] vector. By default, the value is an
absolute location to move the local origin to in the world frame. Use the MoveType name-
value pair to specify a relative move.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MoveType','relative'

MoveType — Type of move
'absolute' (default) | 'relative'

Type of move, specified as 'absolute' or 'relative'. For relative moves, specify a
relative [x y] vector for moveValue based on your current local frame.

FillValue — Fill value for revealed locations
0 (default) | 1

Fill value for revealed locations because of the shifted map limits, specified as 0 or 1.

SyncWith — Secondary map to sync with
binaryOccupancyMap object

Secondary map to sync with, specified as a binaryOccupancyMap object. Any revealed
locations based on the move are updated with values in this map using the world
coordinates.

See Also
binaryOccupancyMap | occupancyMap | occupancyMatrix

Introduced in R2019b
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occupancyMatrix
Convert occupancy grid to matrix

Syntax
mat = binaryOccupancyMatrix(map)

Description
mat = binaryOccupancyMatrix(map) returns occupancy values stored in the
occupancy grid object as a matrix.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the robot. The object contains a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

Output Arguments
mat — Occupancy values
matrix

Occupancy values, returned as an h-by-w matrix, where h and w are defined by the two
elements of the GridSize property of the occupancy grid object.
Data Types: double
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See Also
binaryOccupancyMap | occupancyMap

Topics
“Occupancy Grids”

Introduced in R2016b
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raycast
Compute cell indices along a ray

Syntax
[endpoints,midpoints] = raycast(map,pose,range,angle)
[endpoints,midpoints] = raycast(map,p1,p2)

Description
[endpoints,midpoints] = raycast(map,pose,range,angle) returns cell indices
of the specified map for all cells traversed by a ray originating from the specified pose at
the specified angle and range values. endpoints contains all indices touched by the
end of the ray, with all other points included in midpoints.

[endpoints,midpoints] = raycast(map,p1,p2) returns the cell indices of the line
segment between the two specified points.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the robot. The object contains a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

pose — Position and orientation of sensor
three-element vector

Position and orientation of sensor, specified as an [x y theta] vector. The sensor pose
is an x and y position with angular orientation theta (in radians) measured from the x-
axis.
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range — Range of ray
scalar

Range of ray, specified as a scalar in meters.

angle — Angle of ray
scalar

Angle of ray, specified as a scalar in radians. The angle value is for the corresponding
range.

p1 — Starting point of ray
two-element vector

Starting point of ray, specified as an [x y] two-element vector. Points are defined with
respect to the world-frame.

p2 — Endpoint of ray
two-element vector

Endpoint of ray, specified as an [x y] two-element vector. Points are defined with respect
to the world-frame.

Output Arguments
endpoints — Endpoint grid indices
n-by-2 matrix

Endpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of
grid indices. The endpoints are where the range value hits at the specified angle.
Multiple indices are returned when the endpoint lies on the boundary of multiple cells.

midpoints — Midpoint grid indices
n-by-2 matrix

Midpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of
grid indices. This argument includes all grid indices the ray intersects, excluding the
endpoint.

 raycast

2-163



See Also
binaryOccupancyMap | insertRay | occupancyMap

Topics
“Occupancy Grids” (Robotics System Toolbox)
“Occupancy Grids”

Introduced in R2019b
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rayIntersection
Find intersection points of rays and occupied map cells

Syntax
intersectionPts = rayIntersection(map,pose,angles,maxrange)

Description
intersectionPts = rayIntersection(map,pose,angles,maxrange) returns
intersection points of rays and occupied cells in the specified map. Rays emanate from the
specified pose and angles. Intersection points are returned in the world coordinate
frame. If there is no intersection up to the specified maxrange, [NaN NaN] is returned.

Examples

Get Ray Intersection Points on Occupancy Map

Create a binary occupancy grid map. Add obstacles and inflate them. A lower resolution
map is used to illustrate the importance of the size of your grid cells. Show the map.

map = binaryOccupancyMap(10,10,2);
obstacles = [4 10; 3 5; 7 7];
setOccupancy(map,obstacles,ones(length(obstacles),1))
inflate(map,0.25)
show(map)
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Find the intersection points of occupied cells and rays that emit from the given vehicle
pose. Specify the max range and angles for these rays. The last ray does not intersect
with an obstacle within the max range, so it has no collision point.

maxrange = 6;
angles = [pi/4,-pi/4,0,-pi/8];
vehiclePose = [4,4,pi/2];
intsectionPts = rayIntersection(map,vehiclePose,angles,maxrange)

intsectionPts = 4×2

    3.5000    4.5000
    6.0000    6.0000
    4.0000    9.0000

2 Classes — Alphabetical List

2-166



       NaN       NaN

Plot the intersection points and rays from the pose.

hold on
plot(intsectionPts(:,1),intsectionPts(:,2),'*r') % Intersection points
plot(vehiclePose(1),vehiclePose(2),'ob') % Vehicle pose
for i = 1:3
    plot([vehiclePose(1),intsectionPts(i,1)],...
        [vehiclePose(2),intsectionPts(i,2)],'-b') % Plot intersecting rays
end
plot([vehiclePose(1),vehiclePose(1)-6*sin(angles(4))],...
    [vehiclePose(2),vehiclePose(2)+6*cos(angles(4))],'-b') % No intersection ray
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the robot. The object contains a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

pose — Position and orientation of sensor
three-element vector

Position and orientation of the sensor, specified as an [x y theta] vector. The sensor
pose is an x and y position with angular orientation theta (in radians) measured from the
x-axis.

angles — Ray angles emanating from sensor
vector

Ray angles emanating from the sensor, specified as a vector with elements in radians.
These angles are relative to the specified sensor pose.

maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values
greater than or equal to maxrange are considered free along the whole length of the ray,
up to maxrange.

Output Arguments
intersectionPts — Intersection points
n-by-2 matrix

Intersection points, returned as n-by-2 matrix of [x y] pairs in the world coordinate
frame, where n is the length of angles.

See Also
binaryOccupancyMap | occupancyMap
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Topics
“Occupancy Grids” (Robotics System Toolbox)
“Occupancy Grids” (Robotics System Toolbox)

Introduced in R2019b
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setOccupancy
Set occupancy value of locations

Syntax
setOccupancy(map,xy,occval)
setOccupancy(map,xy,occval,"local")
setOccupancy(map,ij,occval,"grid")
validPts = setOccupancy( ___ )

setOccupancy(map,bottomLeft,inputMatrix)
setOccupancy(map,bottomLeft,inputMatrix,"local")
setOccupancy(map,topLeft,inputMatrix,"grid")

Description
setOccupancy(map,xy,occval) assigns occupancy values, occval, to the input array
of world coordinates, xy in the occupancy grid, map. Each row of the array, xy, is a point
in the world and is represented as an [x y] coordinate pair. occval is either a scalar or
a single column array of the same length as xy . An occupied location is represented as
true (1), and a free location is represented as false (0).

setOccupancy(map,xy,occval,"local") assigns occupancy values, occval, to the
input array of local coordinates, xy, as local coordinates.

setOccupancy(map,ij,occval,"grid") assigns occupancy values, occval, to the
input array of grid indices, ij, as [rows cols].

validPts = setOccupancy( ___ ) outputs an n-element vector of logical values
indicating whether input coordinates are within the map limits.

setOccupancy(map,bottomLeft,inputMatrix) assigns a matrix of occupancy values
by specifying the bottom-left corner location in world coordinates.

setOccupancy(map,bottomLeft,inputMatrix,"local") assigns a matrix of
occupancy values by specifying the bottom-left corner location in local coordinates.
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setOccupancy(map,topLeft,inputMatrix,"grid") assigns a matrix of occupancy
values by specifying the top-left cell index in grid indices and the matrix size.

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)
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Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the robot. The object contains a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array
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World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.
Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.
Data Types: double

occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical
array, where n is the same n in either xy or ij. Values are given between 0 and 1
inclusively.

inputMatrix — Occupancy values
matrix

Occupancy values, specified as a matrix. Values are given between 0 and 1 inclusively.

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as
a two-element vector, [xCoord yCoord]. Location is in world or local coordinates based
on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double
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Output Arguments
validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij.
Locations inside the map return a value of 1. Locations outside the map limits return a
value of 0.

See Also
binaryOccupancyMap | getOccupancy | occupancyMap

Introduced in R2015a
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show
Show occupancy grid values

Syntax
show(map)
show(map, "local")
show(map, "grid")
show( ___ ,Name,Value)
mapImage = show( ___ )

Description
show(map) displays the binary occupancy grid map in the current axes, with the axes
labels representing the world coordinates.

show(map, "local") displays the binary occupancy grid map in the current axes, with
the axes labels representing the local coordinates instead of world coordinates.

show(map, "grid") displays the binary occupancy grid map in the current axes, with
the axes labels representing the grid coordinates.

show( ___ ,Name,Value) specifies additional options specified by one or more name-
value pair arguments.

mapImage = show( ___ ) returns the handle to the image object created by show.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world
map. This process emulates a vehicle driving in an environment and getting updates on
obstacles in the new areas.
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Load example maps. Create a binary occupancy map from the complexMap.

load exampleMaps.mat
map = binaryOccupancyMap(complexMap);
show(map)

Create a smaller local map.

mapLocal = binaryOccupancyMap(complexMap(end-20:end,1:20));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local
frame.

Specify path locations and plot on the map.

path = [5 2
        8 2
        8 8
        30 8];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference
between points by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
        pause(0.2)
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    end
end

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents
the environment of the vehicle.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Parent',axHandle

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as either an Axes or UIAxesobject. See axes or uiaxes.

FastUpdate — Update existing map plot
0 (default) | 1

Update existing map plot, specified as 0 or 1. If you previously plotted your map on your
figure, set to 1 for a faster update to the figure. This is useful for updating the figure in a
loop for fast animations.

See Also
occupancyMap | binaryOccupancyMap

Introduced in R2015a
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syncWith
Sync map with overlapping map

Syntax
mat = syncWith(map,sourcemap)

Description
mat = syncWith(map,sourcemap) updates map with data from another
binaryOccupancyMap object, sourcemap. Locations in map that are also found in
sourcemap are updated. All other cells in map are set to map.DefaultValue.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world
map. This process emulates a vehicle driving in an environment and getting updates on
obstacles in the new areas.

Load example maps. Create a binary occupancy map from the complexMap.

load exampleMaps.mat
map = binaryOccupancyMap(complexMap);
show(map)
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Create a smaller local map.

mapLocal = binaryOccupancyMap(complexMap(end-20:end,1:20));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local
frame.

Specify path locations and plot on the map.

path = [5 2
        8 2
        8 8
        30 8];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off

 syncWith

2-185



Create a loop for moving between points by the map resolution. Divide the difference
between points by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
        pause(0.2)
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    end
end

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

sourcemap — Map representation
binaryOccupancyMap object
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Map representation, specified as a binaryOccupancyMap object.

See Also
binaryOccupancyMap | occupancyMap

Topics
“Occupancy Grids”

Introduced in R2019b
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world2grid
Convert world coordinates to grid indices

Syntax
ij = world2grid(map,xy)

Description
ij = world2grid(map,xy) converts an array of world coordinates, xy, to a [rows
cols] array of grid indices, ij.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

Output Arguments
ij — Grid indices
n-by-2 vertical array

Grid indices, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format,
where n is the number of grid positions.
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See Also
binaryOccupancyMap | grid2world

Introduced in R2015a
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world2local
Convert world coordinates to local coordinates

Syntax
xyLocal = world2local(map,xy)

Description
xyLocal = world2local(map,xy) converts an array of world coordinates to local
coordinates.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

Output Arguments
xyLocal — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of local coordinates.
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See Also
binaryOccupancyMap | grid2world | local2world

Introduced in R2019b
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controllerVFH
Avoid obstacles using vector field histogram

Description
The controllerVFH System objectenables your vehicle to avoid obstacles based on
range sensor data using vector field histograms (VFH) . Given laser scan readings and a
target direction to drive toward, the object computes an obstacle-free steering direction.

controllerVFH specifically uses the VFH+ algorithm to compute an obstacle-free
direction. First, the algorithm takes the ranges and angles from laser scan data and
builds a polar histogram for obstacle locations. Then, the input histogram thresholds are
used to calculate a binary histogram that indicates occupied and free directions. Finally,
the algorithm computes a masked histogram, which is computed from the binary
histogram based on the minimum turning radius of the vehicle.

The algorithm selects multiple steering directions based on the open space and possible
driving directions. A cost function, with weights corresponding to the previous, current,
and target directions, calculates the cost of different possible directions. The object then
returns an obstacle-free direction with minimal cost. Using the obstacle-free direction,
you can input commands to move your vehicle in that direction.

To use this object for your own application and environment, you must tune the properties
of the algorithm. Property values depend on the type of vehicle, the range sensor, and the
hardware you use.

To find an obstacle-free steering direction:

1 Create the controllerVFH object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 controllerVFH
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Creation

Syntax
VFH = controllerVFH
VFH = controllerVFH(Name,Value)

Description
VFH = controllerVFH returns a vector field histogram object that computes the
obstacle-free steering direction using the VFH+ algorithm.

VFH = controllerVFH(Name,Value) returns a vector field histogram object with
additional options specified by one or more Name,Value pairs. Name is the property
name and Value is the corresponding value. Name must appear inside single quotes ('
'). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default values.

Properties
NumAngularSectors — Number of angular sectors in histogram
180 (default) | positive integer

Number of angular sectors in the vector field histogram, specified as a scalar. This
property defines the number of bins used to create the histograms. This property is non-
tunable. You can only set this when the object is initialized.

DistanceLimits — Limits for range readings
[0.05 2] (default) | 2-element vector

Limits for range readings, specified as a 2-element vector with elements measured in
meters. The range readings specified when calling the object are considered only if they
fall within the distance limits. Use the lower distance limit to ignore false positives from
poor sensor performance at lower ranges. Use the upper limit to ignore obstacles that are
too far from the vehicle.

RobotRadius — Radius of vehicle
0.1 (default) | scalar
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Radius of the vehicle in meters, specified as a scalar. This dimension defines the smallest
circle that can circumscribe your vehicle. The vehicle radius is used to account for vehicle
size when computing the obstacle-free direction.

SafetyDistance — Safety distance around vehicle
0.1 (default) | scalar

Safety distance around the vehicle, specified as a scalar in meters. This is a safety
distance to leave around the vehicle position in addition to the value of the RobotRadius
parameter. The sum of the vehicle radius and the safety distance is used to compute the
obstacle-free direction.

MinTurningRadius — Minimum turning radius at current speed
0.1 (default) | scalar

Minimum turning radius in meters for the vehicle moving at its current speed, specified
as a scalar.

TargetDirectionWeight — Cost function weight for target direction
5 (default) | scalar

Cost function weight for moving toward the target direction, specified as a scalar. To
follow a target direction, set this weight to be higher than the sum of the
CurrentDirectionWeight and PreviousDirectionWeight properties. To ignore the
target direction cost, set this weight to zero.

CurrentDirectionWeight — Cost function weight for current direction
2 (default) | scalar

Cost function weight for moving the robot in the current heading direction, specified as a
scalar. Higher values of this weight produce efficient paths. To ignore the current
direction cost, set this weight to zero.

PreviousDirectionWeight — Cost function weight for previous direction
2 (default) | scalar

Cost function weight for moving in the previously selected steering direction, specified as
a scalar. Higher values of this weight produces smoother paths. To ignore the previous
direction cost, set this weight to zero.

HistogramThresholds — Thresholds for binary histogram computation
[3 10] (default) | 2-element vector
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Thresholds for binary histogram computation, specified as a 2-element vector. The
algorithm uses these thresholds to compute the binary histogram from the polar obstacle
density. Polar obstacle density values higher than the upper threshold are represented as
occupied space (1) in the binary histogram. Values smaller than the lower threshold are
represented as free space (0). Values that fall between the limits are set to the values in
the previous binary histogram, with the default being free space (0).

UseLidarScan — Use lidarScan object as scan input
false (default) | true

Use lidarScan object as scan input, specified as either true or false.

Usage

Syntax
steeringDir = vfh(scan,targetDir)
steeringDir = vfh(ranges,angles,targetDir)

Description
steeringDir = vfh(scan,targetDir) finds an obstacle-free steering direction using
the VFH+ algorithm for the input lidarScan object, scan. A target direction is given
based on the target location.

To enable this syntax, you must set the UseLidarScan property to true. For example:

mcl = monteCarloLocalization('UseLidarScan',true);
...
[isUpdated,pose,covariance] = mcl(odomPose,scan);

steeringDir = vfh(ranges,angles,targetDir) defines the lidar scan with two
vectors: ranges and angles.

Input Arguments
scan — Lidar scan readings
lidarScan object
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Lidar scan readings, specified as a lidarScan object.
Dependencies

To use this argument, you must set the UseLidarScan property to true.

mcl.UseLidarScan = true;

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are
distances from a sensor at given angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the
specific angles of the given ranges. The vector must be the same length as the
corresponding ranges vector.

targetDir — Target direction for vehicle
scalar

Target direction for the vehicle, specified as a scalar in radians. The forward direction of
the vehicle is considered zero radians, with positive angles measured counterclockwise.

Output Arguments
steeringDir — Steering direction for vehicle
scalar

Steering direction for the vehicle, specified as a scalar in radians. This obstacle-free
direction is calculated based on the VFH+ algorithm. The forward direction of the vehicle
is considered zero radians, with positive angles measured counterclockwise.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:
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release(obj)

Specific to controllerVFH
show Display VectorFieldHistogram information in figure window

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Create a Vector Field Histogram Object and Visualize Data

This example shows how to calculate a steering direction based on input laser scan data.

Create a controllerVFH object. Set the UseLidarScan property to true.

vfh = controllerVFH;
vfh.UseLidarScan = true;

Input laser scan data and target direction.

ranges = 10*ones(1,500);
ranges(1,225:275) = 1.0;
angles = linspace(-pi,pi,500);
targetDir = 0;

Create a lidarScan object by specifying the ranges and angles.

scan = lidarScan(ranges,angles);

Compute an obstacle-free steering direction.

steeringDir = vfh(scan,targetDir);

Visualize the VectorFieldHistogram computation.
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h = figure;
set(h,'Position',[50 50 800 400])
show(vfh)

References
[1] Borenstein, J., and Y. Koren. "The Vector Field Histogram - Fast Obstacle Avoidance for

Mobile Robots." IEEE Journal of Robotics and Automation. Vol. 7, Number 3,
1991, pp.278–88.

[2] Ulrich, I., and J. Borenstein. "VFH : Reliable Obstacle Avoidance for Fast Mobile
Robots." Proceedings. 1998 IEEE International Conference on Robotics and
Automation. (1998): 1572–1577.

 controllerVFH

2-199



Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

Lidar scans require a limited size in code generation. The lidar scans, scan, are limited to
4000 points (range and angles) as a maximum.

For additional information about code generation for System objects, see “System Objects
in MATLAB Code Generation” (MATLAB Coder)

See Also
lidarScan | show

Topics
“Obstacle Avoidance with TurtleBot and VFH”
“Vector Field Histogram”

Introduced in R2019b
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show
Display VectorFieldHistogram information in figure window

Syntax
show(vfh)

show(vfh,'Parent',parent)

h = show( ___ )

Description
show(vfh) shows histograms calculated by the VFH+ algorithm in a figure window. The
figure also includes the parameters of the controllerVFH object and range values from
the last object call.

show(vfh,'Parent',parent) sets the specified axes handle, parent, to the axes.

h = show( ___ ) returns the figure object handle created by show using any of the
arguments from the previous syntaxes.

Examples

Create a Vector Field Histogram Object and Visualize Data

This example shows how to calculate a steering direction based on input laser scan data.

Create a controllerVFH object. Set the UseLidarScan property to true.

vfh = controllerVFH;
vfh.UseLidarScan = true;

Input laser scan data and target direction.
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2-201



ranges = 10*ones(1,500);
ranges(1,225:275) = 1.0;
angles = linspace(-pi,pi,500);
targetDir = 0;

Create a lidarScan object by specifying the ranges and angles.

scan = lidarScan(ranges,angles);

Compute an obstacle-free steering direction.

steeringDir = vfh(scan,targetDir);

Visualize the VectorFieldHistogram computation.

h = figure;
set(h,'Position',[50 50 800 400])
show(vfh)
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Input Arguments
vfh — Vector field histogram algorithm
controllerVFH object

Vector field histogram algorithm, specified as a controllerVFH object. This object
contains all the parameters for tuning the VFH+ algorithm.

parent — Axes properties
handle

Axes properties, specified as a handle.

Output Arguments
h — Axes handles for VFH algorithm display
Axes array

Axes handles for VFH algorithm display, specified as an Axes array. The VFH histogram
and HistogramThresholds are shown in the first axes. The binary histogram, range
sensor readings, target direction, and steering directions are shown in the second axes.

See Also
controllerVFH

Introduced in R2019b
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controllerPurePursuit
Create controller to follow set of waypoints

Description
The controllerPurePursuit System object creates a controller object used to make a
differential-drive vehicle follow a set of waypoints. The object computes the linear and
angular velocities for the vehicle given the current pose. Successive calls to the object
with updated poses provide updated velocity commands for the vehicle. Use the
MaxAngularVelocity and DesiredLinearVelocity properties to update the
velocities based on the vehicle's performance.

The LookaheadDistance property computes a look-ahead point on the path, which is a
local goal for the vehicle. The angular velocity command is computed based on this point.
Changing LookaheadDistance has a significant impact on the performance of the
algorithm. A higher look-ahead distance results in a smoother trajectory for the vehicle,
but can cause the vehicle to cut corners along the path. A low look-ahead distance can
result in oscillations in tracking the path, causing unstable behavior. For more
information on the pure pursuit algorithm, see “Pure Pursuit Controller”.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

To compute linear and angular velocity control commands:

1 Create the controllerPurePursuit object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).
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Creation

Syntax
controller = controllerPurePursuit

controller = controllerPurePursuit(Name,Value)

Description
controller = controllerPurePursuit creates a pure pursuit object that uses the
pure pursuit algorithm to compute the linear and angular velocity inputs for a differential
drive vehicle.

controller = controllerPurePursuit(Name,Value) creates a pure pursuit object
with additional options specified by one or more Name,Value pairs. Name is the property
name and Value is the corresponding value. Name must appear inside single quotes ('
'). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default values.
Example: controller = controllerPurePursuit('DesiredLinearVelocity',
0.5)

Properties
DesiredLinearVelocity — Desired constant linear velocity
0.1 (default) | scalar in meters per second

Desired constant linear velocity, specified as a scalar in meters per second. The controller
assumes that the vehicle drives at a constant linear velocity and that the computed
angular velocity is independent of the linear velocity.
Data Types: double

LookaheadDistance — Look-ahead distance
1.0 (default) | scalar in meters

Look-ahead distance, specified as a scalar in meters. The look-ahead distance changes the
response of the controller. A vehicle with a higher look-ahead distance produces smooth
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paths but takes larger turns at corners. A vehicle with a smaller look-ahead distance
follows the path closely and takes sharp turns, but potentially creating oscillations in the
path.
Data Types: double

MaxAngularVelocity — Maximum angular velocity
1.0 (default) | scalar in radians per second

Maximum angular velocity, specified a scalar in radians per second. The controller
saturates the absolute angular velocity output at the given value.
Data Types: double

Waypoints — Waypoints
[ ] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of
waypoints. You can generate the waypoints from the mobileRobotPRM class or from
another source.
Data Types: double

Usage

Syntax
[vel,angvel] = controller(pose)
[vel,angvel,lookaheadpoint] = controller(pose)

Description
[vel,angvel] = controller(pose) processes the vehicle's position and orientation,
pose, and outputs the linear velocity, vel, and angular velocity, angvel.

[vel,angvel,lookaheadpoint] = controller(pose) returns the look-ahead point,
which is a location on the path used to compute the velocity commands. This location on
the path is computed using the LookaheadDistance property on the controller
object.
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Input Arguments
pose — Position and orientation of vehicle
3-by-1 vector in the form [x y theta]

Position and orientation of vehicle, specified as a 3-by-1 vector in the form [x y theta].
The vehicle pose is an x and y position with angular orientation θ (in radians) measured
from the x-axis.

Output Arguments
vel — Linear velocity
scalar in meters per second

Linear velocity, specified as a scalar in meters per second.
Data Types: double

angvel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.
Data Types: double

lookaheadpoint — Look-ahead point on path
[x y] vector

Look-ahead point on the path, returned as an [x y] vector. This value is calculated based
on the LookaheadDistance property.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to controllerPurePursuit
info Characteristic information about controllerPurePursuit object

 controllerPurePursuit

2-207



Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Get Additional Pure Pursuit Object Information

Use the info method to get more information about a controllerPurePursuit object.
The info function returns two fields, RobotPose and LookaheadPoint, which
correspond to the current position and orientation of the robot and the point on the path
used to compute outputs from the last call of the object.

Create a controllerPurePursuit object.

pp = controllerPurePursuit;

Assign waypoints.

pp.Waypoints = [0 0;1 1];

Compute control commands using the pp object with the initial pose [x y theta] given
as the input.

[v,w] = pp([0 0 0]);

Get additional information.

s = info(pp)

s = struct with fields:
         RobotPose: [0 0 0]
    LookaheadPoint: [0.7071 0.7071]
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

For additional information about code generation for System objects, see “System Objects
in MATLAB Code Generation” (MATLAB Coder)

See Also
binaryOccupancyMap | binaryOccupancyMap | controllerVFH | occupancyMap |
occupancyMap

Topics
“Pure Pursuit Controller”

Introduced in R2019b
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info
Characteristic information about controllerPurePursuit object

Syntax
controllerInfo = info(controller)

Description
controllerInfo = info(controller) returns a structure, controllerInfo, with
additional information about the status of the controllerPurePursuit object,
controller. The structure contains the fields, RobotPose and LookaheadPoint.

Examples

Get Additional Pure Pursuit Object Information

Use the info method to get more information about a controllerPurePursuit object.
The info function returns two fields, RobotPose and LookaheadPoint, which
correspond to the current position and orientation of the robot and the point on the path
used to compute outputs from the last call of the object.

Create a controllerPurePursuit object.

pp = controllerPurePursuit;

Assign waypoints.

pp.Waypoints = [0 0;1 1];

Compute control commands using the pp object with the initial pose [x y theta] given
as the input.

[v,w] = pp([0 0 0]);
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Get additional information.

s = info(pp)

s = struct with fields:
         RobotPose: [0 0 0]
    LookaheadPoint: [0.7071 0.7071]

Input Arguments
controller — Pure pursuit controller
controllerPurePursuit object

Pure pursuit controller, specified as a controllerPurePursuit object.

Output Arguments
controllerInfo — Information on the controllerPurePursuit object
structure

Information on the controllerPurePursuit object, returned as a structure. The
structure contains two fields:

• RobotPose – A three-element vector in the form [x y theta] that corresponds to
the x-y position and orientation of the vehicle. The angle, theta, is measured in
radians with positive angles measured counterclockwise from the x-axis.

• LookaheadPoint– A two-element vector in the form [x y]. The location is a point on
the path that was used to compute outputs of the last call to the object.

See Also
controllerPurePursuit

Topics
“Pure Pursuit Controller”
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Introduced in R2019b
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dubinsConnection
Dubins path connection type

Description
The dubinsConnection object holds information for computing a dubinsPathSegment
path segment to connect between poses. A Dubins path segment connects two poses as a
sequence of three motions. The motion options are:

• Straight
• Left turn at maximum steer
• Right turn at maximum steer

A Dubins path segment only allows motion in the forward direction.

Use this connection object to define parameters for a robot motion model, including the
minimum turning radius and options for path types. To generate a path segment between
poses using this connection type, call the connect function.

Creation

Syntax
dubConnObj = dubinsConnection
dubConnObj = dubinsConnection(Name,Value)

Description
dubConnObj = dubinsConnection creates an object using default property values.

dubConnObj = dubinsConnection(Name,Value) specifies property values using
name-value pairs. To set multiple properties, specify multiple name-value pairs.
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Properties
MinTurningRadius — Minimum turning radius of the vehicle
1 (default) | positive scalar in meters

Minimum turning radius of the vehicle, specified as a positive scalar in meters. The
minimum turning radius is for the smallest circle the vehicle can make with maximum
steer in a single direction.
Data Types: double

DisabledPathTypes — Path types to disable
{} (default) | cell array of three-element character vectors | vector of three-element string
scalars

Dubins path types to disable, specified as a cell array of three-element character vectors
or vector of string scalars. The cell array defines three sequences of motions that are
prohibited by the vehicle motion model.

Motion Type Description
"S" Straight
"L" Left turn at the maximum steering angle of

the vehicle
"R" Right turn at the maximum steering angle

of the vehicle

To see all available path types, see the AllPathTypes property.

For Dubins connections, the available path types are: {"LSL"} {"LSR"} {"RSL"}
{"RSR"} {"RLR"} {"LRL"}.
Example: ["LSL","LSR"]
Data Types: string | cell

AllPathTypes — All possible path types
cell array of character vectors

This property is read-only.

All possible path types, returned as a cell array of character vectors. This property lists all
types. To disable certain types, specify types from this list in DisabledPathTypes.
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For Dubins connections, the available path types are: {'LSL'} {'LSR'} {'RSL'}
{'RSR'} {'RLR'} {'LRL'}.
Data Types: cell

Object Functions
connect Connect poses for given connection type

Examples

Connect Poses Using Dubins Connection Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Modify Connection Types for Dubins Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

2 Classes — Alphabetical List

2-216



pathSegObj = connect(dubConnObj,startPose,goalPose);

Show the generated path. Notice the direction of the turns.

show(pathSegObj{1})

pathSegObj{1}.MotionTypes

ans = 1x3 cell array
    {'R'}    {'L'}    {'R'}

Disable this specific motion sequence in a new connection object. Reduce the
MinTurningRadius if the robot is more maneuverable. Connect the poses again to get a
different path.
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dubConnObj = dubinsConnection('DisabledPathTypes',{'RLR'});
dubConnObj.MinTurningRadius = 0.5;

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);
pathSegObj{1}.MotionTypes

ans = 1x3 cell array
    {'L'}    {'S'}    {'L'}

show(pathSegObj{1})
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References
[1] Shkel, Andrei M., and Vladimir Lumelsky. "Classification of the Dubins set." Robotics

and Autonomous Systems. Vol. 34, No. 4, 2001, pp. 179–202.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dubinsPathSegment | reedsSheppConnection | reedsSheppPathSegment

Functions
connect | interpolate | show

Introduced in R2019b
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dubinsPathSegment
Dubins path segment connecting two poses

Description
The dubinsPathSegment object holds information for a Dubins path segment that
connects two poses as a sequence of three motions. The motion options are:

• Straight
• Left turn at maximum steer
• Right turn at maximum steer

Creation
To generate a dubinsPathSegment object, use the connect function with a
dubinsConnection object:

dubPathSeg = connect(connectionObj,start,goal) connects the start and goal
pose using the specified connection type object.

To specifically define a path segment:

dubPathSeg = dubinsPathSegment(connectionObj,start,goal,
motionLengths,motionTypes) specifies the Dubins connection type, the start and goal
poses, and the corresponding motion lengths and types. These values are set to the
corresponding properties in the object.

Properties
MinTurningRadius — Minimum turning radius of vehicle
positive scalar

This property is read-only.
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Minimum turning radius of the vehicle, specified as a positive scalar in meters. This value
corresponds to the radius of the turning circle at the maximum steering angle of the
vehicle.
Data Types: double

StartPose — Initial pose of the vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle at the start of the path segment, specified as an [x, y, Θ] vector.
x and y are in meters. Θ is in radians.
Data Types: double

GoalPose — Goal pose of the vehicle
[x, y, Θ] vector

This property is read-only.

Goal pose of the vehicle at the end of the path segment, specified as an [x, y, Θ] vector. x
and y are in meters. Θ is in radians.
Data Types: double

MotionLengths — Length of each motion
three-element numeric vector

This property is read-only.

Length of each motion in the path segment, in world units, specified as a three-element
numeric vector. Each motion length corresponds to a motion type specified in
MotionTypes.
Data Types: double

MotionTypes — Type of each motion
three-element string cell array

This property is read-only.

Type of each motion in the path segment, specified as a three-element string cell array.

 dubinsPathSegment

2-221



Motion Type Description
"S" Straight
"L" Left turn at the maximum steering angle of

the vehicle
"R" Right turn at the maximum steering angle

of the vehicle

Each motion type corresponds to a motion length specified in MotionLengths.

For Dubins connections, the available path types are: {"LSL"} {"LSR"} {"RSL"}
{"RSR"} {"RLR"} {"LRL"}.
Example: {"R" "S" "R"}
Data Types: cell

Length — Length of path segment
positive scalar

This property is read-only.

Length of the path segment, specified as a positive scalar in meters. This length is just a
sum of the elements in MotionLengths.
Data Types: double

Object Functions
interpolate Interpolate poses along path segment
show Visualize path segment

Examples

Connect Poses Using Dubins Connection Path

Create a dubinsConnection object.

dubConnObj = dubinsConnection;
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Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj, pathCosts] = connect(dubConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dubinsConnection | reedsSheppConnection | reedsSheppPathSegment

Functions
connect | interpolate | show

Introduced in R2019b
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insfilterErrorState
Estimate pose from IMU, GPS, and monocular visual odometry (MVO) data

Description
The insfilterErrorState object implements sensor fusion of IMU, GPS, and
monocular visual odometry (MVO) data to estimate pose in the NED (or ENU) reference
frame. The filter uses a 17-element state vector to track the orientation quaternion,
velocity, position, IMU sensor biases, and the MVO scaling factor. The
insfilterErrorState object uses an error-state Kalman filter to estimate these
quantities.

Creation

Syntax
filter = insfilterErrorState
filter = insfilterErrorState('ReferenceFrame',RF)
filter = insfilterErrorState( ___ ,Name,Value)

Description
filter = insfilterErrorState creates an insfilterErrorState object with
default property values.

filter = insfilterErrorState('ReferenceFrame',RF) allows you to specify the
reference frame, RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU'
(East-North-Up). The default value is 'NED'.

filter = insfilterErrorState( ___ ,Name,Value) also allows you set properties
of the created filter using one or more name-value pairs. Enclose each property name
in single quotes.
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Properties
IMUSampleRate — Sample rate of IMU (Hz)
100 (default) | positive scalar

Sample rate of the inertial measurement unit (IMU) in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude,
longitude, and altitude). Altitude is the height above the reference ellipsoid model,
WGS84. The reference location units are [degrees degrees meters].
Data Types: single | double

GyroscopeNoise — Multiplicative process noise variance from gyroscope ((rad/
s)2)
[1e-6 1e-6 1e-6] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar
or 3-element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

GyroscopeBiasNoise — Additive process noise variance from gyroscope bias
((rad/s)2)
[1e-9 1e-9 1e-9] (default) | scalar | 3-element row vector

Additive process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar
or 3-element row vector of positive real finite numbers.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the
noise in the x, y, and z axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to each
axis
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Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from
accelerometer ((m/s2)2)
[1e-4 1e-4 1e-4] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a
scalar or 3-element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the
noise in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each
axis.

Data Types: single | double

AccelerometerBiasNoise — Additive process noise variance from accelerometer
bias ((m/s2)2)
[1e-4 1e-4 1e-4] (default) | scalar | 3-element row vector

Additive process noise variance from accelerometer bias in (m/s2)2, specified as a scalar
or 3-element row vector of positive real numbers.

• If AccelerometerBiasNoise is specified as a row vector, the elements correspond
to the noise in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to
each axis.

State — State vector of Kalman filter
[1;zeros(15,1);1] (default) | 17-element column vector

State vector of the extended Kalman filter, specified as a 17-element column vector. The
state values represent:

State Units Index
Orientation (quaternion
parts)

N/A 1:4

Position (NED or ENU) m 5:7
Velocity (NED or ENU) m/s 8:10
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State Units Index
Gyroscope Bias (XYZ) rad/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16
Visual Odometry Scale (XYZ) N/A 17

The default initial state corresponds to an object at rest located at [0 0 0] in geodetic
LLA coordinates.
Data Types: single | double

StateCovariance — State error covariance for Kalman filter
ones(16) (default) | 16-by-16 matrix

State error covariance for the Kalman filter, specified as a 16-by-16-element matrix of real
numbers. The state error covariance values represent:

State Covariance Row/Column Index
δ Rotation Vector (XYZ) 1:3
δ Position (NED or ENU) 4:6
δ Velocity (NED or ENU) 7:9
δ Gyroscope Bias (XYZ) 10:12
δ Accelerometer Bias (XYZ) 13:15
δ Visual Odometry Scale (XYZ) 16

Note that because this is an error-state Kalman filter, it tracks the errors in the states. δ
represents the error in the corresponding state.
Data Types: single | double

Object Functions
predict Update states using accelerometer and gyroscope data
fusegps Correct states using GPS data
fusemvo Correct states using monocular visual odometry
correct Correct states using direct state measurements
pose Current orientation and position estimate
reset Reset internal states
stateinfo Display state vector information
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Examples

Estimate Pose of Ground Vehicle

Load logged data of a ground vehicle following a circular trajectory. The .mat file
contains IMU and GPS sensor measurements and ground truth orientation and position.

load('loggedGroundVehicleCircle.mat', ...
    'imuFs','localOrigin', ...
    'initialStateCovariance', ...
    'accelData','gyroData', ...
    'gpsFs','gpsLLA','Rpos','gpsVel','Rvel', ...
    'trueOrient','truePos');

Create an INS filter to fuse IMU and GPS data using an error-state Kalman filter.

initialState = [compact(trueOrient(1)),truePos(1,:),-6.8e-3,2.5002,0,zeros(1,6),1].';
filt = insfilterErrorState;
filt.IMUSampleRate = imuFs;
filt.ReferenceLocation = localOrigin;
filt.State = initialState;
filt.StateCovariance = initialStateCovariance;

Preallocate variables for position and orientation. Allocate a variable for indexing into the
GPS data.

numIMUSamples = size(accelData,1);
estOrient = ones(numIMUSamples,1,'quaternion');
estPos = zeros(numIMUSamples,3);

gpsIdx = 1;

Fuse accelerometer, gyroscope, and GPS data. The outer loop predicts the filter forward
at the fastest sample rate (the IMU sample rate).

for idx = 1:numIMUSamples

    % Use predict to estimate the filter state based on the accelData and
    % gyroData arrays.
    predict(filt,accelData(idx,:),gyroData(idx,:));
    
    % GPS data is collected at a lower sample rate than IMU data. Fuse GPS
    % data at the lower rate.
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    if mod(idx, imuFs / gpsFs) == 0
        % Correct the filter states based on the GPS data.
        fusegps(filt,gpsLLA(gpsIdx,:),Rpos,gpsVel(gpsIdx,:),Rvel);
        gpsIdx = gpsIdx + 1;
    end
    
    % Log the current pose estimate
    [estPos(idx,:), estOrient(idx,:)] = pose(filt);
end

Calculate the RMS errors between the known true position and orientation and the output
from the error-state filter.

pErr = truePos - estPos;
qErr = rad2deg(dist(estOrient,trueOrient));

pRMS = sqrt(mean(pErr.^2));
qRMS = sqrt(mean(qErr.^2));

fprintf('Position RMS Error\n');

Position RMS Error

fprintf('\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

    X: 0.40, Y: 0.24, Z: 0.05 (meters)

fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n',qRMS);

    0.30 (degrees)

Visualize the true position and the estimated position.

plot(truePos(:,1),truePos(:,2),estPos(:,1),estPos(:,2),'r:','LineWidth',2)
grid on
axis square
xlabel('N (m)')
ylabel('E (m)')
legend('Ground Truth','Estimation')
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Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterErrorState uses a 17-axis error state Kalman filter structure to estimate
pose in the NED reference frame. The state is defined as:
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x =

q0
q1
q2
q3

positionN
positionE
positionD

vN
vE
vD

gyrobiasX
gyrobiasY
gyrobiasZ
accelbiasX
accelbiasY

accelbiasZ
scaleFactor

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents
a frame rotation from the platform's current orientation to the local NED coordinate
system.

• positionN, positionE, positionD –– Position of the platform in the local NED coordinate
system.

• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.
• scaleFactor –– Scale factor of the pose estimate.

Given the conventional formulation of the state transition function,

xk k− 1 = f (x k− 1 k− 1)

the predicted state estimate is:
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xk k− 1 =

q0 + Δt ∗ q1(gyrobiasX/2− gyroX/2) + Δt ∗ q2 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q3 ∗ (gyrobiasZ/2− gyroZ/2)
q1− Δt ∗ q0(gyrobiasX/2− gyroX/2) + Δt ∗ q3 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q2 ∗ (gyrobiasZ/2− gyroZ/2)
q2− Δt ∗ q3(gyrobiasX/2− gyroX/2)− Δt ∗ q0 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q1 ∗ (gyrobiasZ/2− gyroZ/2)
q3 + Δt ∗ q2(gyrobiasX/2− gyroX/2)− Δt ∗ q1 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q0 ∗ (gyrobiasZ/2− gyroZ/2)

positionN + Δt ∗ vN
positionE + Δt ∗ vE
positionD + Δt ∗ vD

vN − Δt ∗

q0 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ + gN +
q2 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q1 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ −
q3 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ

vE− Δt ∗

q0 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ + gE−
q1 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q2 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ +
q3 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ

vD− Δt ∗

q0 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ + gD +
q1 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ −
q2 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ −
q3 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ

gyrobiasX
gyrobiasY
gyrobiasZ
accelbiasX
accelbiasY
accelbiasZ

scaleFactor
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where

• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilterMARG | insfilterNonholonomic

Introduced in R2019a
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correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and
state estimation error covariance of FUSE, an insfilterErrorState object, based on
the measurement and measurement covariance. The measurement maps directly to the
state specified by the indices idx.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

idx — State vector index of measurements to correct
N-element vector of increasing integers in the range [1, 17]

State vector index of measurements to correct, specified as an N-element vector of
increasing integers in the range [1, 17].

The state values represent:

State Units Index
Orientation (quaternion
parts)

N/A 1:4

Position (NED) m 5:7
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State Units Index
Velocity (NED) m/s 8:10
Gyroscope Bias (XYZ) rad/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16
Visual Odometry Scale (XYZ) N/A 17

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of
elements of the index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | M-element vector | M-by-M matrix

Covariance of measurement, specified as a scalar, M-element vector, or M-by-M matrix. If
you correct orientation (state indices 1–4), then M = numel(idx)-1. If you do not
correct orientation, then M = numel(idx).
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a
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fusegps
Correct states using GPS data

Syntax
fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS data to correct the state estimate.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a
real finite 3-element row vector. Latitude and longitude are in degrees with north and
east being positive. Altitude is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
scalar | 3-element row vector | 3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double
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velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-
element row vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s)2

scalar | 3-element row vector | 3-by-3 matrix

Velocity measurement covariance of the GPS receiver in the local NED coordinate system
in (m/s)2, specified as a 3-by-3 matrix.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a
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fusemvo
Correct states using monocular visual odometry

Syntax
fusemvo(FUSE,position,positionCovariance,ornt,orntCovariance)

Description
fusemvo(FUSE,position,positionCovariance,ornt,orntCovariance) fuses
position and orientation data from monocular visual odometry (MVO) measurements to
correct the state and state estimation error covariance.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of camera in local NED coordinate system (m)
3-element row vector

Position of camera in the local NED coordinate system in meters, specified as a real finite
3-element row vector.
Data Types: single | double

positionCovariance — Position measurement covariance of MVO (m2)
scalar | 3-element vector | 3-by-3 matrix

Position measurement covariance of MVO in m2, specified as a scalar, 3-element vector, or
3-by-3 matrix.
Data Types: single | double
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ornt — Orientation of camera with respect to local NED coordinate system
scalar quaternion | rotation matrix

Orientation of the camera with respect to the local NED coordinate system, specified as a
scalar quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix is a frame
rotation from the NED coordinate system to the current camera coordinate system.
Data Types: quaternion | single | double

orntCovariance — Orientation measurement covariance of monocular visual
odometry (rad2)
scalar | 3-element vector | 3-by-3 matrix

Orientation measurement covariance of monocular visual odometry in rad2, specified as a
scalar, 3-element vector, or 3-by-3 matrix.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

2 Classes — Alphabetical List
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predict
Update states using accelerometer and gyroscope data

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope
data to update the state estimate.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate
system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system
(rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

2 Classes — Alphabetical List
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reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators of FUSE,
an insfilterErrorState object, to their default values.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

 reset

2-243



stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property of FUSE, an
insfilterErrorState object, and the associated units.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

2 Classes — Alphabetical List
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pose
Current orientation and position estimate

Syntax
[position,orientation,velocity] = pose(FUSE)
[position,orientation,velocity] = pose(FUSE,format)

Description
[position,orientation,velocity] = pose(FUSE) returns the current estimate of
the pose of the object tracked by FUSE, an insfilterErrorState object.

[position,orientation,velocity] = pose(FUSE,format) returns the current
estimate of the pose with orientation in the specified orientation format.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or
'rotmat' for a rotation matrix.
Data Types: char | string
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Output Arguments
position — Position estimate in local NED coordinate system (m)
3-element row vector

Position estimate in the local NED coordinate system in meters, returned as a 3-element
row vector.
Data Types: single | double

orientation — Orientation estimate in local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, returned as a scalar quaternion
or 3-by-3 rotation matrix, depending on the specified orientation format. The quaternion
or rotation matrix represents a frame rotation from the local NED reference frame to the
body reference frame.
Data Types: single | double | quaternion

velocity — Velocity estimate in local NED coordinate system (m/s)
3-element row vector

Velocity estimate in the local NED coordinate system in m/s, returned as a 3-element row
vector.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

2 Classes — Alphabetical List
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Introduced in R2019a

 pose

2-247



gpsSensor
GPS receiver simulation model

Description
The gpsSensor System object models data output from a Global Positioning System
(GPS) receiver.

To model a GPS receiver:

1 Create the gpsSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
GPS = gpsSensor
GPS = gpsSensor('ReferenceFrame',RF)
GPS = gpsSensor( ___ ,Name,Value)

Description
GPS = gpsSensor returns a gpsSensorSystem object that computes a Global
Positioning System receiver reading based on a local position and velocity input signal.
The default reference position in geodetic coordinates is

• latitude: 0o N
• longitude: 0o E
• altitude: 0 m
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GPS = gpsSensor('ReferenceFrame',RF) returns a gpsSensorSystem object that
computes a global positioning system receiver reading relative to the reference frame RF.
Specify RF as 'NED' (North-East-Down) or 'ENU'(East-North-Up). The default value is
'NED'.

GPS = gpsSensor( ___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

UpdateRate — Update rate of receiver (Hz)
1 (default) | positive real scalar

Update rate of the receiver in Hz, specified as a positive real scalar.
Data Types: single | double

ReferenceLocation — Origin of local navigation reference frame
[0 0 0] (default) | [degrees degrees meters]

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude,
longitude, and altitude). Altitude is the height above the reference ellipsoid model,
WGS84. The reference location is in [degrees degrees meters]. The degree format is
decimal degrees (DD).
Data Types: single | double

HorizontalPositionAccuracy — Horizontal position accuracy (m)
1.6 (default) | nonnegative real scalar

Horizontal position accuracy in meters, specified as a nonnegative real scalar. The
horizontal position accuracy specifies the standard deviation of the noise in the horizontal
position measurement.
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Tunable: Yes
Data Types: single | double

VerticalPositionAccuracy — Vertical position accuracy (m)
3 (default) | nonnegative real scalar

Vertical position accuracy in meters, specified as a nonnegative real scalar. The vertical
position accuracy specifies the standard deviation of the noise in the vertical position
measurement.

Tunable: Yes
Data Types: single | double

VelocityAccuracy — Velocity accuracy (m/s)
0.1 (default) | nonnegative real scalar

Velocity accuracy in meters per second, specified as a nonnegative real scalar. The
velocity accuracy specifies the standard deviation of the noise in the velocity
measurement.

Tunable: Yes
Data Types: single | double

DecayFactor — Global position noise decay factor
0.999 (default) | scalar in the range [0,1]

Global position noise decay factor, specified as a scalar in the range [0,1].

A decay factor of 0 models the global position noise as a white noise process. A decay
factor of 1 models the global position noise as a random walk process.

Tunable: Yes
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global
random number stream.
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• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar
algorithm with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a
nonnegative integer scalar.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Usage

Syntax
[position,velocity,groundspeed,course] = GPS(truePosition,
trueVelocity)

Description
[position,velocity,groundspeed,course] = GPS(truePosition,
trueVelocity) computes global navigation satellite system receiver readings from the
position and velocity inputs.

Input Arguments
truePosition — Position of GPS receiver in local navigation coordinate system
(m)
N-by-3 matrix

Position of the GPS receiver in the local navigation coordinate system in meters, specified
as a real finite N-by-3 matrix.
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N is the number of samples in the current frame.
Data Types: single | double

trueVelocity — Velocity of GPS receiver in local navigation coordinate system
(m/s)
N-by-3 matrix

Velocity of GPS receiver in the local navigation coordinate system in meters per second,
specified as a real finite N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

Output Arguments
position — Position in LLA coordinate system
N-by-3 matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA)
coordinate system, returned as a real finite N-by-3 array. Latitude and longitude are in
degrees with North and East being positive. Altitude is in meters.

N is the number of samples in the current frame.
Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity of the GPS receiver in the local navigation coordinate system in meters per
second, returned as a real finite N-by-3 array.

N is the number of samples in the current frame.
Data Types: single | double

groundspeed — Magnitude of horizontal velocity in local navigation coordinate
system (m/s)
N-by-1 column vector

Magnitude of the horizontal velocity of the GPS receiver in the local navigation coordinate
system in meters per second, returned as a real finite N-by-1 column vector.
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N is the number of samples in the current frame.
Data Types: single | double

course — Direction of horizontal velocity in local navigation coordinate system
(°)
N-by-1 column vector

Direction of the horizontal velocity of the GPS receiver in the local navigation coordinate
system in degrees, returned as a real finite N-by-1 column of values between 0 and 360.
North corresponds to 360 degrees and East corresponds to 90 degrees.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Generate GPS Position Measurements From Stationary Input

Create a gpsSensor System object™ to model GPS receiver data. Assume a typical one
Hz sample rate and a 1000-second simulation time. Define the reference location in terms
of latitude, longitude, and altitude (LLA) of Natick, MA (USA). Define the sensor as
stationary by specifying the true position and velocity with zeros.
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fs = 1;
duration = 1000;
numSamples = duration*fs;

refLoc = [42.2825 -71.343 53.0352];

truePosition = zeros(numSamples,3);
trueVelocity = zeros(numSamples,3);

gps = gpsSensor('UpdateRate',fs,'ReferenceLocation',refLoc);

Call gps with the specified truePosition and trueVelocity to simulate receiving
GPS data for a stationary platform.

position = gps(truePosition,trueVelocity);

Plot the true position and the GPS sensor readings for position.

t = (0:(numSamples-1))/fs;

subplot(3, 1, 1)
plot(t, position(:,1), ...
     t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
     t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

subplot(3, 1, 3)
plot(t, position(:,3), ...
     t, ones(numSamples)*refLoc(3))
ylabel('Altitute (m)')
xlabel('Time (s)')

2 Classes — Alphabetical List

2-254



The position readings have noise controlled by HorizontalPositionAccuracy,
VerticalPositionAccuracy, VelocityAccuracy, and DecayFactor. The
DecayFactor property controls the drift in the noise model. By default, DecayFactor is
set to 0.999, which approaches a random walk process. To observe the effect of the
DecayFactor property:

1 Reset the gps object.
2 Set DecayFactor to 0.5.
3 Call gps with variables specifying a stationary position.
4 Plot the results.

The GPS position readings now oscillate around the true position.
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reset(gps)
gps.DecayFactor = 0.5;
position = gps(truePosition,trueVelocity);

subplot(3, 1, 1)
plot(t, position(:,1), ...
     t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings - Decay Factor = 0.5')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
     t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

subplot(3, 1, 3)
plot(t, position(:,3), ...
     t, ones(numSamples)*refLoc(3))
ylabel('Altitute (m)')
xlabel('Time (s)')
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Relationship Between Groundspeed and Course Accuracy

GPS receivers achieve greater course accuracy as groundspeed increases. In this
example, you create a GPS receiver simulation object and simulate the data received from
a platform that is accelerating from a stationary position.

Create a default gpsSensor System object™ to model data returned by a GPS receiver.

GPS = gpsSensor

GPS = 
  gpsSensor with properties:

 gpsSensor

2-257



                    UpdateRate: 1                  Hz         
             ReferenceLocation: [0 0 0]            [deg deg m]
    HorizontalPositionAccuracy: 1.6                m          
      VerticalPositionAccuracy: 3                  m          
              VelocityAccuracy: 0.1                m/s        
                  RandomStream: 'Global stream'               
                   DecayFactor: 0.999                         

Create matrices to describe the position and velocity of a platform in the NED coordinate
system. The platform begins from a stationary position and accelerates to 60 m/s North-
East over 60 seconds, then has a vertical acceleration to 2 m/s over 2 seconds, followed
by a 2 m/s rate of climb for another 8 seconds. Assume a constant velocity, such that the
velocity is the simple derivative of the position.

duration = 70;
numSamples = duration*GPS.UpdateRate;

course = 45*ones(duration,1);
groundspeed = [(1:60)';60*ones(10,1)];

Nvelocity   = groundspeed.*sind(course);
Evelocity   = groundspeed.*cosd(course);
Dvelocity   = [zeros(60,1);-1;-2*ones(9,1)];
NEDvelocity = [Nvelocity,Evelocity,Dvelocity];

Ndistance   = cumsum(Nvelocity);
Edistance   = cumsum(Evelocity);
Ddistance   = cumsum(Dvelocity);
NEDposition = [Ndistance,Edistance,Ddistance];

Model GPS measurement data by calling the GPS object with your velocity and position
matrices.

[~,~,groundspeedMeasurement,courseMeasurement] = GPS(NEDposition,NEDvelocity);

Plot the groundspeed and the difference between the true course and the course returned
by the GPS simulator.

As groundspeed increases, the accuracy of the course increases. Note that the velocity
increase during the last ten seconds has no effect, because the additional velocity is not in
the ground plane.
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t = (0:numSamples-1)/GPS.UpdateRate;

subplot(2,1,1)
plot(t,groundspeed);
ylabel('Speed (m/s)')
title('Relationship Between Groundspeed and Course Accuracy')

subplot(2,1,2)
courseAccuracy = courseMeasurement - course;
plot(t,courseAccuracy)
xlabel('Time (s)');
ylabel('Course Accuracy (degrees)')
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Model GPS Receiver Data

Simulate GPS data received during a trajectory from the city of Natick, MA, to Boston,
MA.

Define the decimal degree latitude and longitude for the city of Natick, MA USA, and
Boston, MA USA. For simplicity, set the altitude for both locations to zero.

NatickLLA = [42.27752809999999, -71.34680909999997, 0];
BostonLLA = [42.3600825, -71.05888010000001, 0];

Define a motion that can take a platform from Natick to Boston in 20 minutes. Set the
origin of the local NED coordinate system as Natick. Create a waypointTrajectory
object to output the trajectory 10 samples at a time.

fs = 1;
duration = 60*20;

bearing = 68; % degrees
distance = 25.39e3; % meters
distanceEast = distance*sind(bearing);
distanceNorth = distance*cosd(bearing);

NatickNED = [0,0,0];
BostonNED = [distanceNorth,distanceEast,0];

trajectory = waypointTrajectory( ...
    'Waypoints', [NatickNED;BostonNED], ...
    'TimeOfArrival',[0;duration], ...
    'SamplesPerFrame',10, ...
    'SampleRate',fs);

Create a gpsSensor object to model receiving GPS data for the platform. Set the
HorizontalPositionalAccuracy to 25 and the DecayFactor to 0.25 to emphasize
the noise. Set the ReferenceLocation to the Natick coordinates in LLA.

GPS = gpsSensor( ...
    'HorizontalPositionAccuracy',25, ...
    'DecayFactor',0.25, ...
    'UpdateRate',fs, ...
    'ReferenceLocation',NatickLLA);
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Open a figure and plot the position of Natick and Boston in LLA. Ignore altitude for
simplicity.

In a loop, call the gpsSensor object with the ground-truth trajectory to simulate the
received GPS data. Plot the ground-truth trajectory and the model of received GPS data.

figure(1)
plot(NatickLLA(1),NatickLLA(2),'ko', ...
     BostonLLA(1),BostonLLA(2),'kx')
xlabel('Latitude (degrees)')
ylabel('Longitude (degrees)')
title('GPS Sensor Data for Natick to Boston Trajectory')
hold on

while ~isDone(trajectory)
    [truePositionNED,~,trueVelocityNED] = trajectory();
    reportedPositionLLA = GPS(truePositionNED,trueVelocityNED);

    figure(1)
    plot(reportedPositionLLA(:,1),reportedPositionLLA(:,2),'r.')
end
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As a best practice, release System objects when complete.

release(GPS)
release(trajectory)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
System Objects
imuSensor

Introduced in R2018b
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gyroparams class
Gyroscope sensor parameters

Description
The gyroparams class creates a gyroscope sensor parameters object. You can use this
object to model a gyroscope when simulating an IMU with imuSensor.

Construction
params = gyroparams returns an ideal gyroscope sensor parameters object with
default values.

params = gyroparams(Name,Value) configures gyroparams object properties using
one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Any
unspecified properties take default values.

Properties
MeasurementRange — Maximum sensor reading (rad/s)
Inf (default) | real positive scalar

Maximum sensor reading in rad/s, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements ((rad/s)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (rad/s)/LSB, specified as a real nonnegative scalar
Data Types: single | double
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ConstantBias — Constant sensor offset bias (rad/s)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in rad/s, specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has
the input scalar value.
Data Types: single | double

AxesMisalignment — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the
range [0,100]

Sensor axes skew in %, specified as a real scalar or 3-element row vector with values
ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

NoiseDensity — Power spectral density of sensor noise ((rad/s)/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in (rad/s)/√Hz, specified as a real scalar or 3-
element row vector. This property corresponds to the angle random walk (ARW). Any
scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (rad/s)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in rad/s, specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has
the input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor ((rad/s)(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (rad/s)(√Hz), specified as a real scalar or 3-element
row vector. Any scalar input is converted into a real 3-element row vector where each
element has the input scalar value.
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Data Types: single | double

TemperatureBias — Sensor bias from temperature ((rad/s)/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in ((rad/s)/℃), specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element
has the input scalar value.
Data Types: single | double

TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the
range [0,100]

Scale factor error from temperature in (%/℃), specified as a real scalar or 3-element row
vector with values ranging from 0 to 100. Any scalar input is converted into a real 3-
element row vector where each element has the input scalar value.
Data Types: single | double

AccelerationBias — Sensor bias from linear acceleration (rad/s)/(m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from linear acceleration in (rad/s)/(m/s2), specified as a real scalar or 3-
element row vector. Any scalar input is converted into a real 3-element row vector where
each element has the input scalar value.
Data Types: single | double

Examples
Generate Gyroscope Data from Stationary Inputs

Generate gyroscope data for an imuSensor object from stationary inputs.

Generate a gyroscope parameter object with a maximum sensor reading of 4.363 rad/s
and a resolution of 1.332e-4 rad/s /LSB. The constant offset bias is 0.349 rad/s. The
sensor has a power spectral density of 8.727e-4 rad/s/ Hz. The bias from temperature is
0.349 rad/s2 /0C. The scale factor error from temperature is 0.2%/0C. The sensor axes
are skewed by 2%. The sensor bias from linear acceleration is 0.178e-3 (rad/s)/(m/s2)
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params = gyroparams('MeasurementRange',4.363,'Resolution',1.332e-04,'ConstantBias',0.349,'NoiseDensity',8.727e-4,'TemperatureBias',0.349,'TemperatureScaleFactor',0.02,'AxesMisalignment',2,'AccelerationBias',0.178e-3);

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object
using the gyroscope parameter object.

Fs = 100;
numSamples = 1000;
t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('accel-gyro','SampleRate', Fs, 'Gyroscope', params);

Generate gyroscope data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);
 
[~, gyroData] = imu(acc, angvel, orient);

Plot the resultant gyroscope data.

plot(t, gyroData)
title('Gyroscope')
xlabel('s')
ylabel('rad/s')
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Classes
accelparams | magparams

System Objects
imuSensor

Introduced in R2018b
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imufilter
Orientation from accelerometer and gyroscope readings

Description
The imufilter System object fuses accelerometer and gyroscope sensor data to
estimate device orientation.

To estimate device orientation:

1 Create the imufilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
FUSE = imufilter
FUSE = imufilter('ReferenceFrame',RF)
FUSE = imufilter( ___ ,Name,Value)

Description
FUSE = imufilter returns an indirect Kalman filter System object, FUSE, for fusion of
accelerometer and gyroscope data to estimate device orientation. The filter uses a nine-
element state vector to track error in the orientation estimate, the gyroscope bias
estimate, and the linear acceleration estimate.

FUSE = imufilter('ReferenceFrame',RF) returns an imufilter filter System
object that fuses accelerometer and gyroscope data to estimate device orientation relative
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to the reference frame RF. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-
Up). The default value is 'NED'.

FUSE = imufilter( ___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: FUSE = imufilter('SampleRate',200,'GyroscopeNoise',1e-6)
creates a System object, FUSE, with a 200 Hz sample rate and gyroscope noise set to 1e-6
radians per second squared.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SampleRate — Sample rate of input sensor data (Hz)
100 (default) | positive finite scalar

Sample rate of the input sensor data in Hz, specified as a positive finite scalar.

Tunable: No
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

DecimationFactor — Decimation factor
1 (default) | positive integer scalar

Decimation factor by which to reduce the sample rate of the input sensor data, specified
as a positive integer scalar.

The number of rows of the inputs, accelReadings and gyroReadings, must be a
multiple of the decimation factor.

Tunable: No
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Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

AccelerometerNoise — Variance of accelerometer signal noise ((m/s2)2)
0.00019247 (default) | positive real scalar

Variance of accelerometer signal noise in (m/s2)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

GyroscopeNoise — Variance of gyroscope signal noise ((rad/s)2)
9.1385e-5 (default) | positive real scalar

Variance of gyroscope signal noise in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

GyroscopeDriftNoise — Variance of gyroscope offset drift ((rad/s)2)
3.0462e-13 (default) | positive real scalar

Variance of gyroscope offset drift in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

LinearAccelerationNoise — Variance of linear acceleration noise ((m/s2)2)
0.0096236 (default) | positive real scalar

Variance of linear acceleration noise in (m/s2)2, specified as a positive real scalar. Linear
acceleration is modeled as a lowpass filtered white noise process.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64
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LinearAcclerationDecayFactor — Decay factor for linear acceleration drift
0.5 (default) | scalar in the range [0,1]

Decay factor for linear acceleration drift, specified as a scalar in the range [0,1]. If linear
acceleration is changing quickly, set LinearAccelerationDecayFactor to a lower
value. If linear acceleration changes slowly, set LinearAccelerationDecayFactor to a
higher value. Linear acceleration drift is modeled as a lowpass-filtered white noise
process.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

InitialProcessNoise — Covariance matrix for process noise
9-by-9 matrix

Covariance matrix for process noise, specified as a 9-by-9 matrix. The default is:
  Columns 1 through 6

   0.000006092348396                   0                   0                   0                   0                   0
                   0   0.000006092348396                   0                   0                   0                   0
                   0                   0   0.000006092348396                   0                   0                   0
                   0                   0                   0   0.000076154354947                   0                   0
                   0                   0                   0                   0   0.000076154354947                   0
                   0                   0                   0                   0                   0   0.000076154354947
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0
                   0                   0                   0                   0                   0                   0

  Columns 7 through 9

                   0                   0                   0
                   0                   0                   0
                   0                   0                   0
                   0                   0                   0
                   0                   0                   0
                   0                   0                   0
   0.009623610000000                   0                   0
                   0   0.009623610000000                   0
                   0                   0   0.009623610000000

The initial process covariance matrix accounts for the error in the process model.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 |
int32 | int64

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'
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Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size
of the output depends on the input size, N, and the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

Data Types: char | string

Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings)

Description
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings) fuses
accelerometer and gyroscope readings to compute orientation and angular velocity
measurements. The algorithm assumes that the device is stationary before the first call.

Input Arguments
accelReadings — Accelerometer readings in sensor body coordinate system
(m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-
by-3 matrix. N is the number of samples, and the three columns of accelReadings
represent the [x y z] measurements. Accelerometer readings are assumed to correspond
to the sample rate specified by the SampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3
matrix. N is the number of samples, and the three columns of gyroReadings represent
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the [x y z] measurements. Gyroscope readings are assumed to correspond to the sample
rate specified by the SampleRate property.
Data Types: single | double

Output Arguments
orientation — Orientation that rotates quantities from global coordinate
system to sensor body coordinate system
M-by-1 vector of quaternions (default) | 3-by-3-by-M array

Orientation that can rotate quantities from a global coordinate system to a body
coordinate system, returned as quaternions or an array. The size and type of
orientation depends on whether the OrienationFormat property is set to
'quaternion' or 'Rotation matrix':

• 'quaternion' –– The output is an M-by-1 vector of quaternions, with the same
underlying data type as the inputs.

• 'Rotation matrix' –– The output is a 3-by-3-by-M array of rotation matrices the
same data type as the inputs.

The number of input samples, N, and the DecimationFactor property determine M.

You can use orientation in a rotateframe function to rotate quantities from a global
coordinate system to a sensor body coordinate system.
Data Types: quaternion | single | double

angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
M-by-3 array (default)

Angular velocity with gyroscope bias removed in the sensor body coordinate system in
rad/s, returned as an M-by-3 array. The number of input samples, N, and the
DecimationFactor property determine M.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:
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release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Estimate Orientation from IMU data

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and
magnetometer sensor data from a device oscillating in pitch (around y-axis), then yaw
(around z-axis), and then roll (around x-axis). The file also contains the sample rate of the
recording.

load 'rpy_9axis.mat' sensorData Fs

accelerometerReadings = sensorData.Acceleration;
gyroscopeReadings = sensorData.AngularVelocity;

Create an imufilter System object™ with sample rate set to the sample rate of the
sensor data. Specify a decimation factor of two to reduce the computational cost of the
algorithm.

decim = 2;
fuse = imufilter('SampleRate',Fs,'DecimationFactor',decim);

Pass the accelerometer readings and gyroscope readings to the imufilter object, fuse,
to output an estimate of the sensor body orientation over time. By default, the orientation
is output as a vector of quaternions.

q = fuse(accelerometerReadings,gyroscopeReadings);

Orientation is defined by the angular displacement required to rotate a parent coordinate
system to a child coordinate system. Plot the orientation in Euler angles in degrees over
time.

imufilter fusion correctly estimates the change in orientation from an assumed north-
facing initial orientation. However, the device's x-axis was pointing southward when
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recorded. To correctly estimate the orientation relative to the true initial orientation or
relative to NED, use ahrsfilter.

time = (0:decim:size(accelerometerReadings,1)-1)/Fs;

plot(time,eulerd(q,'ZYX','frame'))
title('Orientation Estimate')
legend('Z-axis', 'Y-axis', 'X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
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Model Tilt Using Gyroscope and Accelerometer Readings

Model a tilting IMU that contains an accelerometer and gyroscope using the imuSensor
System object™. Use ideal and realistic models to compare the results of orientation
tracking using the imufilter System object.

Load a struct describing ground-truth motion and a sample rate. The motion struct
describes sequential rotations:

1 yaw: 120 degrees over two seconds
2 pitch: 60 degrees over one second
3 roll: 30 degrees over one-half second
4 roll: -30 degrees over one-half second
5 pitch: -60 degrees over one second
6 yaw: -120 degrees over two seconds

In the last stage, the motion struct combines the 1st, 2nd, and 3rd rotations into a single-
axis rotation. The acceleration, angular velocity, and orientation are defined in the local
NED coordinate system.

load y120p60r30.mat motion fs
accNED = motion.Acceleration;
angVelNED = motion.AngularVelocity;
orientationNED = motion.Orientation;

numSamples = size(motion.Orientation,1);
t = (0:(numSamples-1)).'/fs;

Create an ideal IMU sensor object and a default IMU filter object.

IMU = imuSensor('accel-gyro','SampleRate',fs);

aFilter = imufilter('SampleRate',fs);

In a loop:

1 Simulate IMU output by feeding the ground-truth motion to the IMU sensor object.
2 Filter the IMU output using the default IMU filter object.

orientation = zeros(numSamples,1,'quaternion');
for i = 1:numSamples
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    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

    orientation(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

Plot the orientation over time.

figure(1)
plot(t,eulerd(orientation,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Ideal IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')
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Modify properties of your imuSensor to model real-world sensors. Run the loop again
and plot the orientation estimate over time.

IMU.Accelerometer = accelparams( ...
    'MeasurementRange',19.62, ...
    'Resolution',0.00059875, ...
    'ConstantBias',0.4905, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',0.003924, ...
    'BiasInstability',0, ...
    'TemperatureBias', [0.34335 0.34335 0.5886], ...
    'TemperatureScaleFactor',0.02);
IMU.Gyroscope = gyroparams( ...
    'MeasurementRange',4.3633, ...
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    'Resolution',0.00013323, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',8.7266e-05, ...
    'TemperatureBias',0.34907, ...
    'TemperatureScaleFactor',0.02, ...
    'AccelerationBias',0.00017809, ...
    'ConstantBias',[0.3491,0.5,0]);

orientationDefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

    orientationDefault(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

figure(2)
plot(t,eulerd(orientationDefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')
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The ability of the imufilter to track the ground-truth data is significantly reduced when
modeling a realistic IMU. To improve performance, modify properties of your imufilter
object. These values were determined empirically. Run the loop again and plot the
orientation estimate over time.

aFilter.GyroscopeNoise          = 7.6154e-7;
aFilter.AccelerometerNoise      = 0.0015398;
aFilter.GyroscopeDriftNoise     = 3.0462e-12;
aFilter.LinearAccelerationNoise = 0.00096236;
aFilter.InitialProcessNoise     = aFilter.InitialProcessNoise*10;

orientationNondefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples
    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));
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    orientationNondefault(i) = aFilter(accelBody,gyroBody);
end
release(aFilter)

figure(3)
plot(t,eulerd(orientationNondefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Nondefault IMU Filter')
legend('Z-axis','Y-axis','X-axis')
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To quantify the improved performance of the modified imufilter, plot the quaternion
distance between the ground-truth motion and the orientation as returned by the
imufilter with default and nondefault properties.

qDistDefault = rad2deg(dist(orientationNED,orientationDefault));
qDistNondefault = rad2deg(dist(orientationNED,orientationNondefault));

figure(4)
plot(t,[qDistDefault,qDistNondefault])
title('Quaternion Distance from True Orientation')
legend('Realistic IMU Data, Default IMU Filter', ...
       'Realistic IMU Data, Nondefault IMU Filter')
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')
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Remove Bias from Angular Velocity Measurement

This example shows how to remove gyroscope bias from an IMU using imufilter.

Use kinematicTrajectory to create a trajectory with two parts. The first part has a
constant angular velocity about the y- and z-axes. The second part has a varying angular
velocity in all three axes.

duration = 60*8;
fs = 20;
numSamples = duration * fs;
rng('default') % Seed the RNG to reproduce noisy sensor measurements.
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initialAngVel = [0,0.5,0.25];
finalAngVel = [-0.2,0.6,0.5];
constantAngVel = repmat(initialAngVel,floor(numSamples/2),1);
varyingAngVel = [linspace(initialAngVel(1), finalAngVel(1), ceil(numSamples/2)).', ...
    linspace(initialAngVel(2), finalAngVel(2), ceil(numSamples/2)).', ...
    linspace(initialAngVel(3), finalAngVel(3), ceil(numSamples/2)).'];

angVelBody = [constantAngVel; varyingAngVel];
accBody = zeros(numSamples,3);

traj = kinematicTrajectory('SampleRate',fs);

[~,qNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

Create an imuSensor System object™, IMU, with a nonideal gyroscope. Call IMU with the
ground-truth acceleration, angular velocity, and orientation.

IMU = imuSensor('accel-gyro', ...
    'Gyroscope',gyroparams('RandomWalk',0.003,'ConstantBias',0.3), ...
    'SampleRate',fs);

[accelReadings, gyroReadingsBody] = IMU(accNED,angVelNED,qNED);

Create an imufilter System object, fuse. Call fuse with the modeled accelerometer
readings and gyroscope readings.

fuse = imufilter('SampleRate',fs, 'GyroscopeDriftNoise', 1e-6);

[~,angVelBodyRecovered] = fuse(accelReadings,gyroReadingsBody);

Plot the ground-truth angular velocity, the gyroscope readings, and the recovered angular
velocity for each axis.

The angular velocity returned from the imufilter compensates for the effect of the
gyroscope bias over time and converges to the true angular velocity.

time = (0:numSamples-1)'/fs;

figure(1)
plot(time,angVelBody(:,1), ...
     time,gyroReadingsBody(:,1), ...
     time,angVelBodyRecovered(:,1))
title('X-axis')
legend('True Angular Velocity', ...
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       'Gyroscope Readings', ...
       'Recovered Angular Velocity')
ylabel('Angular Velocity (rad/s)')

figure(2)
plot(time,angVelBody(:,2), ...
     time,gyroReadingsBody(:,2), ...
     time,angVelBodyRecovered(:,2))
title('Y-axis')
ylabel('Angular Velocity (rad/s)')
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figure(3)
plot(time,angVelBody(:,3), ...
     time,gyroReadingsBody(:,3), ...
     time,angVelBodyRecovered(:,3))
title('Z-axis')
ylabel('Angular Velocity (rad/s)')
xlabel('Time (s)')
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Algorithms
Note: The following algorithm only applies to an NED reference frame.

The imufilter uses the six-axis Kalman filter structure described in [1] (Sensor Fusion
and Tracking Toolbox). The algorithm attempts to track the errors in orientation,
gyroscope offset, and linear acceleration to output the final orientation and angular
velocity. Instead of tracking the orientation directly, the indirect Kalman filter models the
error process, x, with a recursive update:
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xk =
θk
bk
ak

= Fk

θk− 1
bk− 1
ak− 1

+ wk

where xk is a 9-by-1 vector consisting of:

• θk –– 3-by-1 orientation error vector, in degrees, at time k
• bk –– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time k
• ak –– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time k
• wk –– 9-by-1 additive noise vector
• Fk –– state transition model

Because xk is defined as the error process, the a priori estimate is always zero, and
therefore the state transition model, Fk, is zero. This insight results in the following
reduction of the standard Kalman equations:

Standard Kalman equations:

xk
− = Fkxk− 1

+

Pk− = FkPk− 1
+ Fk

T + Qk

yk = zk− Hkxk
−

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = xk

− + Kkyk

Pk
+ = Pk−− KkHkPk−

Kalman equations used in this algorithm:
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xk
− = 0

Pk− = Qk

yk = zk

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = Kkyk

Pk
+ = Pk−− KkHkPk−

where

• xk
− –– predicted (a priori) state estimate; the error process

• Pk
− –– predicted (a priori) estimate covariance

• yk –– innovation
• Sk –– innovation covariance
• Kk –– Kalman gain
• xk

+ –– updated (a posteriori) state estimate
• Pk

+ –– updated (a posteriori) estimate covariance

k represents the iteration, the superscript + represents an a posteriori estimate, and the
superscript − represents an a priori estimate.

The graphic and following steps describe a single frame-based iteration through the
algorithm.
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Before the first iteration, the accelReadings and gyroReadings inputs are chunked
into 1-by-3 frames and DecimationFactor-by-3 frames, respectively. The algorithm uses
the most current accelerometer readings corresponding to the chunk of gyroscope
readings.

Detailed Overview
Step through the algorithm for an explanation of each stage of the detailed overview.
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Model
The algorithm models acceleration and angular change as linear processes.

Predict Orientation

The orientation for the current frame is predicted by first estimating the angular change
from the previous frame:

ΔφN × 3 =
gyroReadingsN × 3− gyroOf f set1 × 3

f s

where N is the decimation factor specified by the DecimationFactor property, and fs is
the sample rate specified by the SampleRate property.
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The angular change is converted into quaternions using the rotvec quaternion
construction syntax:

ΔQN × 1 = quaternion(ΔφN × 3, ′rotvec′)

The previous orientation estimate is updated by rotating it by ΔQ:

q1 × 1
− = q1 × 1

+ ∏
n = 1

N
ΔQn

During the first iteration, the orientation estimate, q−, is initialized by ecompass with an
assumption that the x-axis points north.

Estimate Gravity from Orientation

The gravity vector is interpreted as the third column of the quaternion, q−, in rotation
matrix form:

g1 × 3 = rPrior(: , 3) T

See ecompass for an explanation of why the third column of rPrior can be interpreted as
the gravity vector.

Estimate Gravity from Acceleration

A second gravity vector estimation is made by subtracting the decayed linear acceleration
estimate of the previous iteration from the accelerometer readings:

gAccel1 × 3 = accelReadings1 × 3− linAccelprior1 × 3

Error Model
The error model is the difference between the gravity estimate from the accelerometer
readings and the gravity estimate from the gyroscope readings: z = g− gAccel.
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Kalman Equations
The Kalman equations use the gravity estimate derived from the gyroscope readings, g,
and the observation of the error process, z, to update the Kalman gain and intermediary
covariance matrices. The Kalman gain is applied to the error signal, z, to output an a
posteriori error estimate, x+.
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Observation Model

The observation model maps the 1-by-3 observed state, g, into the 3-by-9 true state, H.

The observation model is constructed as:

H3 × 9 =
0 gz −gy 0 −κgz κgy 1 0 0
−gz 0 gx κgz 0 −κgx 0 1 0
gy −gx 0 −κgy κgx 0 0 0 1

where gx, gy, and gz are the x-, y-, and z-elements of the gravity vector estimated from the
orientation, respectively. κ is a constant determined by the SampleRate and
DecimationFactor properties: κ = DecimationFactor/SampleRate.

See sections 7.3 and 7.4 of [1] (Sensor Fusion and Tracking Toolbox) for a derivation of
the observation model.
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Innovation Covariance

The innovation covariance is a 3-by-3 matrix used to track the variability in the
measurements. The innovation covariance matrix is calculated as:

S3x3 = R3x3 + H3x9 P9x9
− H3x9

T

where

• H is the observation model matrix
• P− is the predicted (a priori) estimate of the covariance of the observation model

calculated in the previous iteration
• R is the covariance of the observation model noise, calculated as:

R3 × 3 = λ + ξ + κ β + η
1 0 0
0 1 0
0 0 1

.

The following properties define the observation model noise variance:

• κ –– (DecimationFactor/SampleRate)2

• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• λ –– AccelerometerNoise
• ξ –– LinearAccelerationNoise

Update Error Estimate Covariance

The error estimate covariance is a 9-by-9 matrix used to track the variability in the state.

The error estimate covariance matrix is updated as:

P9 × 9
+ = P9 × 9

− − K9 × 3 H3 × 9 P9 × 9
−

where K is the Kalman gain, H is the measurement matrix, and P− is the error estimate
covariance calculated during the previous iteration.

Predict Error Estimate Covariance

The error estimate covariance is a 9-by-9 matrix used to track the variability in the state.
The a priori error estimate covariance, P−, is set to the process noise covariance, Q,
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determined during the previous iteration. Q is calculated as a function of the a posteriori
error estimate covariance, P+. When calculating Q, the cross-correlation terms are
assumed to be negligible compared to the autocorrelation terms, and are set to zero:
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Q =

P+(1) + κ2P+(31) + β + η 0 0 −κ P+(31) + β 0 0 0 0 0

0 P+(11) + κ2P+(41) + β + η 0 0 P+(41) + β 0 0 0 0

0 0 P+(21) + κ2P+(51) + β + η 0 0 P+(51) + β 0 0 0

−κ P+(31) + β 0 0 P+(31) + β 0 0 0 0 0

0 P+(41) + β 0 0 P+(41) + β 0 0 0 0

0 0 P+(51) + β 0 0 P+(51) + β 0 0 0

0 0 0 0 0 0 ν2P+(61) + ξ 0 0

0 0 0 0 0 0 0 ν2P+(71) + ξ 0

0 0 0 0 0 0 0 0 ν2P+(81) + ξ
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where

• P+ –– is the updated (a posteriori) error estimate covariance
• κ –– DecimationFactor/SampleRate
• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• ν –– LinearAcclerationDecayFactor
• ξ –– LinearAccelerationNoise

See section 10.1 of [1] (Sensor Fusion and Tracking Toolbox) for a derivation of the terms
of the process error matrix.

Kalman Gain

The Kalman gain matrix is a 9-by-3 matrix used to weight the innovation. In this
algorithm, the innovation is interpreted as the error process, z.

The Kalman gain matrix is constructed as:

K9 × 3 = P9 × 9
− H3 × 9

T S3 × 3
T −1

where

• P- –– predicted error covariance
• H –– observation model
• S –– innovation covariance

Update a Posteriori Error

The a posterior error estimate is determined by combining the Kalman gain matrix with
the error in the gravity vector estimations:

x9 × 1 = K9 × 3 (z1 × 3)T
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Correct

Estimate Orientation

The orientation estimate is updated by multiplying the previous estimation by the error:

q+ = q− θ+

Estimate Linear Acceleration

The linear acceleration estimation is updated by decaying the linear acceleration
estimation from the previous iteration and subtracting the error:

linAccelPrior = (linAccelPriork− 1)ν− b+

where

• ν –– LinearAcclerationDecayFactor

Estimate Gyroscope Offset

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from
the gyroscope offset from the previous iteration:

gyroOf f set = gyroOf f setk− 1− a+
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Compute Angular Velocity
To estimate angular velocity, the frame of gyroReadings are averaged and the
gyroscope offset computed in the previous iteration is subtracted:

angularVelocity1 × 3 = ∑gyroReadingsN × 3
N − gyroOf f set1 × 3

where N is the decimation factor specified by the DecimationFactor property.

The gyroscope offset estimation is initialized to zeros for the first iteration.

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-

Sensor-Fusion/tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten, and P.H. Veltink. "Compensation of
Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body
Segment Orientation." IEEE Transactions on Neural Systems and Rehabilitation
Engineering. Vol. 13. Issue 3, 2005, pp. 395-405.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
ahrsfilter | ecompass | gpsSensor | imuSensor
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Introduced in R2018b
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imuSensor

IMU simulation model

Description
The imuSensor System object models receiving data from an inertial measurement unit
(IMU).

To model an IMU:

1 Create the imuSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
IMU = imuSensor
IMU = imuSensor('accel-gyro')
IMU = imuSensor('accel-mag')
IMU = imuSensor('accel-gyro-mag')
IMU = imuSensor( ___ ,'ReferenceFrame',RF)
IMU = imuSensor( ___ ,Name,Value)

Description
IMU = imuSensor returns a System object, IMU, that computes an inertial measurement
unit reading based on an inertial input signal. IMU has an ideal accelerometer and
gyroscope.
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IMU = imuSensor('accel-gyro') returns an imuSensor System object with an ideal
accelerometer and gyroscope. imuSensor and imuSensor('accel-gyro') are
equivalent creation syntaxes.

IMU = imuSensor('accel-mag') returns an imuSensor System object with an ideal
accelerometer and magnetometer.

IMU = imuSensor('accel-gyro-mag') returns an imuSensor System object with an
ideal accelerometer, gyroscope, and magnetometer.

IMU = imuSensor( ___ ,'ReferenceFrame',RF) returns an imuSensor System
object that computes an inertial measurement unit reading relative to the reference
frame RF. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default
value is 'NED'.

IMU = imuSensor( ___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values. This syntax can be used in
combination with any of the previous input arguments.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

IMUType — Type of inertial measurement unit
'accel-gyro' (default) | 'accel-mag' | 'accel-gyro-mag'

Type of inertial measurement unit, specified as a 'accel-gyro', 'accel-mag', or
'accel-gyro-mag'.

The type of inertial measurement unit specifies which sensor readings to model:

• 'accel-gyro' –– Accelerometer and gyroscope
• 'accel-mag' –– Accelerometer and magnetometer

 imuSensor

2-305



• 'accel-gyro-mag' –– Accelerometer, gyroscope, and magnetometer

You can specify IMUType as a value-only argument during creation or as a Name,Value
pair.
Data Types: char | string

SampleRate — Sample rate of sensor (Hz)
100 (default) | positive scalar

Sample rate of the sensor model in Hz, specified as a positive scalar.
Data Types: single | double

Temperature — Temperature of IMU (oC)
25 (default) | real scalar

Operating temperature of the IMU in degrees Celsius, specified as a real scalar.

Tunable: Yes
Data Types: single | double

MagneticField — Magnetic field vector in local navigation coordinate system
(μT)
[27.5550 -2.4169 -16.0849] (default) | real scalar

Magnetic field vector in microtesla, specified as a three-element row vector in the local
navigation coordinate system.

The default magnetic field corresponds to the magnetic field at latitude zero, longitude
zero, and altitude zero.

Tunable: Yes
Data Types: single | double

Accelerometer — Accelerometer sensor parameters
accelparams object (default)

Accelerometer sensor parameters, specified by an accelparams object.

Tunable: Yes
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Gyroscope — Gyroscope sensor parameters
gyroparams object (default)

Gyroscope sensor parameters, specified by a gyroparams object.

Tunable: Yes

Magnetometer — Magnetometer sensor parameters
magparams object (default)

Magnetometer sensor parameters, specified by a magparams object.

Tunable: Yes

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global
random number stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar
algorithm with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a real,
nonnegative integer scalar.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
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Usage

Syntax
[accelReadings,gyroReadings] = IMU(acc,angVel)
[accelReadings,gyroReadings] = IMU(acc,angVel,orientation)

[accelReadings,magReadings] = IMU(acc,angVel)
[accelReadings,magReadings] = IMU(acc,angVel,orientation)

[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel)
[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel,
orientation)

Description
[accelReadings,gyroReadings] = IMU(acc,angVel) generates accelerometer and
gyroscope readings from the acceleration and angular velocity inputs.

This syntax is only valid if IMUType is set to 'accel-gyro' or 'accel-gyro-mag'.

[accelReadings,gyroReadings] = IMU(acc,angVel,orientation) generates
accelerometer and gyroscope readings from the acceleration, angular velocity, and
orientation inputs.

This syntax is only valid if IMUType is set to 'accel-gyro' or 'accel-gyro-mag'.

[accelReadings,magReadings] = IMU(acc,angVel) generates accelerometer and
magnetometer readings from the acceleration and angular velocity inputs.

This syntax is only valid if IMUType is set to 'accel-mag'.

[accelReadings,magReadings] = IMU(acc,angVel,orientation) generates
accelerometer and magnetometer readings from the acceleration, angular velocity, and
orientation inputs.

This syntax is only valid if IMUType is set to 'accel-mag'.
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[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel) generates
accelerometer, gyroscope, and magnetometer readings from the acceleration and angular
velocity inputs.

This syntax is only valid if IMUType is set to 'accel-gyro-mag'.

[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel,
orientation) generates accelerometer, gyroscope, and magnetometer readings from
the acceleration, angular velocity, and orientation inputs.

This syntax is only valid if IMUType is set to 'accel-gyro-mag'.

Input Arguments
acc — Acceleration of IMU in local navigation coordinate system (m/s2)
N-by-3 matrix

Acceleration of the IMU in the local navigation coordinate system, specified as a real,
finite N-by-3 array in meters per second squared. N is the number of samples in the
current frame.
Data Types: single | double

angVel — Angular velocity of IMU in local navigation coordinate system (rad/s)
N-by-3 matrix

Angular velocity of the IMU in the local navigation coordinate system, specified as a real,
finite N-by-3 array in radians per second. N is the number of samples in the current
frame.
Data Types: single | double

orientation — Orientation of IMU in local navigation coordinate system
N-element quaternion column vector | 3-by-3-by-N-element rotation matrix

Orientation of the IMU with respect to the local navigation coordinate system, specified
as a quaternion N-element column vector or a 3-by-3-by-N rotation matrix. Each
quaternion or rotation matrix represents a frame rotation from the local navigation
coordinate system to the current IMU sensor body coordinate system. N is the number of
samples in the current frame.
Data Types: single | double | quaternion
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Output Arguments
accelReadings — Accelerometer measurement of IMU in sensor body coordinate
system (m/s2)
N-by-3 matrix

Accelerometer measurement of the IMU in the sensor body coordinate system, specified
as a real, finite N-by-3 array in meters per second squared. N is the number of samples in
the current frame.
Data Types: single | double

gyroReadings — Gyroscope measurement of IMU in sensor body coordinate
system (rad/s)
N-by-3 matrix

Gyroscope measurement of the IMU in the sensor body coordinate system, specified as a
real, finite N-by-3 array in radians per second. N is the number of samples in the current
frame.
Data Types: single | double

magReadings — Magnetometer measurement of IMU in sensor body coordinate
system (μT)
N-by-3 matrix (default)

Magnetometer measurement of the IMU in the sensor body coordinate system, specified
as a real, finite N-by-3 array in microtelsa. N is the number of samples in the current
frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

2 Classes — Alphabetical List

2-310



Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Create Default imuSensor System object

The imuSensor System object™ enables you to model the data received from an inertial
measurement unit consisting of a combination of gyroscope, accelerometer, and
magnetometer.

Create a default imuSensor object.

IMU = imuSensor

IMU = 
  imuSensor with properties:

          IMUType: 'accel-gyro'
       SampleRate: 100
      Temperature: 25
    Accelerometer: [1x1 accelparams]
        Gyroscope: [1x1 gyroparams]
     RandomStream: 'Global stream'

The imuSensor object, IMU, contains an idealized gyroscope and accelerometer. Use dot
notation to view properties of the gyroscope.

IMU.Gyroscope

ans = 
  gyroparams with properties:

    MeasurementRange: Inf        rad/s      
          Resolution: 0          (rad/s)/LSB
        ConstantBias: [0 0 0]    rad/s      
    AxesMisalignment: [0 0 0]    %          
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       NoiseDensity: [0 0 0]    (rad/s)/√Hz
    BiasInstability: [0 0 0]    rad/s      
         RandomWalk: [0 0 0]    (rad/s)*√Hz

           TemperatureBias: [0 0 0]    (rad/s)/°C    
    TemperatureScaleFactor: [0 0 0]    %/°C          
          AccelerationBias: [0 0 0]    (rad/s)/(m/s²)

Sensor properties are defined by corresponding parameter objects. For example, the
gyroscope model used by the imuSensor is defined by an instance of the gyroparams
class. You can modify properties of the gyroscope model using dot notation. Set the
gyroscope measurement range to 4.3 rad/s.

IMU.Gyroscope.MeasurementRange = 4.3;

You can also set sensor properties to preset parameter objects. Create an accelparams
object to mimic specific hardware, and then set the IMU Accelerometer property to the
accelparams object. Display the Accelerometer property to verify the properties are
correctly set.

SpecSheet1 = accelparams( ...
    'MeasurementRange',19.62, ...
    'Resolution',0.00059875, ...
    'ConstantBias',0.4905, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',0.003924, ...
    'BiasInstability',0, ...
    'TemperatureBias', [0.34335 0.34335 0.5886], ...
    'TemperatureScaleFactor', 0.02);

IMU.Accelerometer = SpecSheet1;

IMU.Accelerometer

ans = 
  accelparams with properties:

    MeasurementRange: 19.62                     m/s²      
          Resolution: 0.00059875                (m/s²)/LSB
        ConstantBias: [0.4905 0.4905 0.4905]    m/s²      
    AxesMisalignment: [2 2 2]                   %         

2 Classes — Alphabetical List

2-312



       NoiseDensity: [0.003924 0.003924 0.003924]    (m/s²)/√Hz
    BiasInstability: [0 0 0]                         m/s²      
         RandomWalk: [0 0 0]                         (m/s²)*√Hz

           TemperatureBias: [0.34335 0.34335 0.5886]    (m/s²)/°C
    TemperatureScaleFactor: [0.02 0.02 0.02]            %/°C     

Generate Ideal IMU Data from Stationary Input

Use the imuSensor System object™ to model receiving data from a stationary ideal IMU
containing an accelerometer, gyroscope, and magnetometer.

Create an ideal IMU sensor model that contains an accelerometer, gyroscope, and
magnetometer.

IMU = imuSensor('accel-gyro-mag')

IMU = 
  imuSensor with properties:

          IMUType: 'accel-gyro-mag'
       SampleRate: 100
      Temperature: 25
    MagneticField: [27.5550 -2.4169 -16.0849]
    Accelerometer: [1x1 accelparams]
        Gyroscope: [1x1 gyroparams]
     Magnetometer: [1x1 magparams]
     RandomStream: 'Global stream'

Define the ground-truth, underlying motion of the IMU you are modeling. The
acceleration and angular velocity are defined relative to the local NED coordinate system.

numSamples = 1000;
acceleration = zeros(numSamples,3);
angularVelocity = zeros(numSamples,3);

Call IMU with the ground-truth acceleration and angular velocity. The object outputs
accelerometer readings, gyroscope readings, and magnetometer readings, as modeled by
the properties of the imuSensor System object. The accelerometer readings, gyroscope
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readings, and magnetometer readings are relative to the IMU sensor body coordinate
system.

[accelReading,gyroReading,magReading] = IMU(acceleration,angularVelocity);

Plot the accelerometer readings, gyroscope readings, and magnetometer readings.

t = (0:(numSamples-1))/IMU.SampleRate;
subplot(3,1,1)
plot(t,accelReading)
legend('X-axis','Y-axis','Z-axis')
title('Accelerometer Readings')
ylabel('Acceleration (m/s^2)')

subplot(3,1,2)
plot(t,gyroReading)
legend('X-axis','Y-axis','Z-axis')
title('Gyroscope Readings')
ylabel('Angular Velocity (rad/s)')

subplot(3,1,3)
plot(t,magReading)
legend('X-axis','Y-axis','Z-axis')
title('Magnetometer Readings')
xlabel('Time (s)')
ylabel('Magnetic Field (uT)')
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Orientation is not specified and the ground-truth motion is stationary, so the IMU sensor
body coordinate system and the local NED coordinate system overlap for the entire
simulation.

• Accelerometer readings: The z-axis of the sensor body corresponds to the Down-axis.
The 9.8 m/s^2 acceleration along the z-axis is due to gravity.

• Gyroscope readings: The gyroscope readings are zero along each axis, as expected.
• Magnetometer readings: Because the sensor body coordinate system is aligned with

the local NED coordinate system, the magnetometer readings correspond to the
MagneticField property of imuSensor. The MagneticField property is defined in
the local NED coordinate system.
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Model Rotating Six-Axis IMU Data

Use imuSensor to model data obtained from a rotating IMU containing an ideal
accelerometer and an ideal magnetometer. Use kinematicTrajectory to define the
ground-truth motion. Fuse the imuSensor model output using the ecompass function to
determine orientation over time.

Define the ground-truth motion for a platform that rotates 360 degrees in four seconds,
and then another 360 degrees in two seconds. Use kinematicTrajectory to output the
orientation, acceleration, and angular velocity in the NED coordinate system.

fs = 100;
firstLoopNumSamples = fs*4;
secondLoopNumSamples = fs*2;
totalNumSamples = firstLoopNumSamples + secondLoopNumSamples;

traj = kinematicTrajectory('SampleRate',fs);

accBody = zeros(totalNumSamples,3);
angVelBody = zeros(totalNumSamples,3);
angVelBody(1:firstLoopNumSamples,3) = (2*pi)/4;
angVelBody(firstLoopNumSamples+1:end,3) = (2*pi)/2;

[~,orientationNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

Create an imuSensor object with an ideal accelerometer and an ideal magnetometer.
Call IMU with the ground-truth acceleration, angular velocity, and orientation to output
accelerometer readings and magnetometer readings. Plot the results.

IMU = imuSensor('accel-mag','SampleRate',fs);

[accelReadings,magReadings] = IMU(accNED,angVelNED,orientationNED);

figure(1)
t = (0:(totalNumSamples-1))/fs;
subplot(2,1,1)
plot(t,accelReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Acceleration (m/s^2)')
title('Accelerometer Readings')

subplot(2,1,2)
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plot(t,magReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Magnetic Field (\muT)')
xlabel('Time (s)')
title('Magnetometer Readings')

The accelerometer readings indicate that the platform has no translation. The
magnetometer readings indicate that the platform is rotating around the z-axis.

Feed the accelerometer and magnetometer readings into the ecompass function to
estimate the orientation over time. The ecompass function returns orientation in
quaternion format. Convert orientation to Euler angles and plot the results. The
orientation plot indicates that the platform rotates about the z-axis only.
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orientation = ecompass(accelReadings,magReadings);

orientationEuler = eulerd(orientation,'ZYX','frame');

figure(2)
plot(t,orientationEuler)
legend('Z-axis','Y-axis','X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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Model Rotating Six-Axis IMU Data with Noise

Use imuSensor to model data obtained from a rotating IMU containing a realistic
accelerometer and a realistic magnetometer. Use kinematicTrajectory to define the
ground-truth motion. Fuse the imuSensor model output using the ecompass function to
determine orientation over time.

Define the ground-truth motion for a platform that rotates 360 degrees in four seconds,
and then another 360 degrees in two seconds. Use kinematicTrajectory to output the
orientation, acceleration, and angular velocity in the NED coordinate system.

fs = 100;
firstLoopNumSamples = fs*4;
secondLoopNumSamples = fs*2;
totalNumSamples = firstLoopNumSamples + secondLoopNumSamples;

traj = kinematicTrajectory('SampleRate',fs);

accBody = zeros(totalNumSamples,3);
angVelBody = zeros(totalNumSamples,3);
angVelBody(1:firstLoopNumSamples,3) = (2*pi)/4;
angVelBody(firstLoopNumSamples+1:end,3) = (2*pi)/2;

[~,orientationNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

Create an imuSensor object with a realistic accelerometer and a realistic magnetometer.
Call IMU with the ground-truth acceleration, angular velocity, and orientation to output
accelerometer readings and magnetometer readings. Plot the results.

IMU = imuSensor('accel-mag','SampleRate',fs);

IMU.Accelerometer = accelparams( ...
    'MeasurementRange',19.62, ...            % m/s^2
    'Resolution',0.0023936, ...              % m/s^2 / LSB
    'TemperatureScaleFactor',0.008, ...      % % / degree C
    'ConstantBias',0.1962, ...               % m/s^2
    'TemperatureBias',0.0014715, ...         % m/s^2 / degree C
    'NoiseDensity',0.0012361);               % m/s^2 / Hz^(1/2)

IMU.Magnetometer = magparams( ...
    'MeasurementRange',1200, ...             % uT
    'Resolution',0.1, ...                    % uT / LSB
    'TemperatureScaleFactor',0.1, ...        % % / degree C
    'ConstantBias',1, ...                    % uT
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    'TemperatureBias',[0.8 0.8 2.4], ...     % uT / degree C
    'NoiseDensity',[0.6 0.6 0.9]/sqrt(100)); % uT / Hz^(1/2)

[accelReadings,magReadings] = IMU(accNED,angVelNED,orientationNED);

figure(1)
t = (0:(totalNumSamples-1))/fs;
subplot(2,1,1)
plot(t,accelReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Acceleration (m/s^2)')
title('Accelerometer Readings')

subplot(2,1,2)
plot(t,magReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Magnetic Field (\muT)')
xlabel('Time (s)')
title('Magnetometer Readings')
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The accelerometer readings indicate that the platform has no translation. The
magnetometer readings indicate that the platform is rotating around the z-axis.

Feed the accelerometer and magnetometer readings into the ecompass function to
estimate the orientation over time. The ecompass function returns orientation in
quaternion format. Convert orientation to Euler angles and plot the results. The
orientation plot indicates that the platform rotates about the z-axis only.

orientation = ecompass(accelReadings,magReadings);

orientationEuler = eulerd(orientation,'ZYX','frame');

figure(2)
plot(t,orientationEuler)
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legend('Z-axis','Y-axis','X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')

%

Model Tilt Using Gyroscope and Accelerometer Readings

Model a tilting IMU that contains an accelerometer and gyroscope using the imuSensor
System object™. Use ideal and realistic models to compare the results of orientation
tracking using the imufilter System object.
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Load a struct describing ground-truth motion and a sample rate. The motion struct
describes sequential rotations:

1 yaw: 120 degrees over two seconds
2 pitch: 60 degrees over one second
3 roll: 30 degrees over one-half second
4 roll: -30 degrees over one-half second
5 pitch: -60 degrees over one second
6 yaw: -120 degrees over two seconds

In the last stage, the motion struct combines the 1st, 2nd, and 3rd rotations into a single-
axis rotation. The acceleration, angular velocity, and orientation are defined in the local
NED coordinate system.

load y120p60r30.mat motion fs
accNED = motion.Acceleration;
angVelNED = motion.AngularVelocity;
orientationNED = motion.Orientation;

numSamples = size(motion.Orientation,1);
t = (0:(numSamples-1)).'/fs;

Create an ideal IMU sensor object and a default IMU filter object.

IMU = imuSensor('accel-gyro','SampleRate',fs);

aFilter = imufilter('SampleRate',fs);

In a loop:

1 Simulate IMU output by feeding the ground-truth motion to the IMU sensor object.
2 Filter the IMU output using the default IMU filter object.

orientation = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

    orientation(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)
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Plot the orientation over time.

figure(1)
plot(t,eulerd(orientation,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Ideal IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')

Modify properties of your imuSensor to model real-world sensors. Run the loop again
and plot the orientation estimate over time.

IMU.Accelerometer = accelparams( ...
    'MeasurementRange',19.62, ...
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    'Resolution',0.00059875, ...
    'ConstantBias',0.4905, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',0.003924, ...
    'BiasInstability',0, ...
    'TemperatureBias', [0.34335 0.34335 0.5886], ...
    'TemperatureScaleFactor',0.02);
IMU.Gyroscope = gyroparams( ...
    'MeasurementRange',4.3633, ...
    'Resolution',0.00013323, ...
    'AxesMisalignment',2, ...
    'NoiseDensity',8.7266e-05, ...
    'TemperatureBias',0.34907, ...
    'TemperatureScaleFactor',0.02, ...
    'AccelerationBias',0.00017809, ...
    'ConstantBias',[0.3491,0.5,0]);

orientationDefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

    orientationDefault(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

figure(2)
plot(t,eulerd(orientationDefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')
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The ability of the imufilter to track the ground-truth data is significantly reduced when
modeling a realistic IMU. To improve performance, modify properties of your imufilter
object. These values were determined empirically. Run the loop again and plot the
orientation estimate over time.

aFilter.GyroscopeNoise          = 7.6154e-7;
aFilter.AccelerometerNoise      = 0.0015398;
aFilter.GyroscopeDriftNoise     = 3.0462e-12;
aFilter.LinearAccelerationNoise = 0.00096236;
aFilter.InitialProcessNoise     = aFilter.InitialProcessNoise*10;

orientationNondefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples
    [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));
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    orientationNondefault(i) = aFilter(accelBody,gyroBody);
end
release(aFilter)

figure(3)
plot(t,eulerd(orientationNondefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Nondefault IMU Filter')
legend('Z-axis','Y-axis','X-axis')
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To quantify the improved performance of the modified imufilter, plot the quaternion
distance between the ground-truth motion and the orientation as returned by the
imufilter with default and nondefault properties.

qDistDefault = rad2deg(dist(orientationNED,orientationDefault));
qDistNondefault = rad2deg(dist(orientationNED,orientationNondefault));

figure(4)
plot(t,[qDistDefault,qDistNondefault])
title('Quaternion Distance from True Orientation')
legend('Realistic IMU Data, Default IMU Filter', ...
       'Realistic IMU Data, Nondefault IMU Filter')
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')
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Algorithms

Accelerometer
The accelerometer model uses the ground-truth orientation and acceleration inputs and
the imuSensor and accelparams properties to model accelerometer readings.

 imuSensor

2-329



Convert to Sensor Frame

The ground-truth acceleration is converted from the local frame to the sensor frame using
the ground-truth orientation:

a = orientation acceleration T

If the orientation is input in quaternion form, it is converted to a rotation matrix before
processing.
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Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model,
which adds axes misalignment and bias:

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of accelparams, and α1, α2, and α3 are given by the
first, second, and third elements of the AxesMisalignment property of accelparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of accelparams, and h1 is a filter defined by the
SampleRate property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by
the standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an accelparams
property. Elements of w are random numbers given by settings of the imuSensor random
stream.

 imuSensor

2-331



Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream
and then filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of accelparams, SampleRate is a property of
imuSensor, and h2 is a filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from
a standard with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

where Temperature is a property of imuSensor, and TemperatureBias is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a
property of accelparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange
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and then setting the resolution:

accelReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of accelparams.

Gyroscope
The gyroscope model uses the ground-truth orientation, acceleration, and angular
velocity inputs, and the imuSensor and gyroparams properties to model accelerometer
readings.
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Convert to Sensor Frame

The ground-truth angular velocity is converted from the local frame to the sensor frame
using the ground-truth orientation:

a = orientation angularVelocity T

If the orientation is input in quaternion form, it is converted to a rotation matrix before
processing.
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Bulk Model

The ground-truth angular velocity in the sensor frame, a, passes through the bulk model,
which adds axes misalignment and bias:

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of gyroparams, and α1, α2, and α3 are given by the
first, second, and third elements of the AxesMisalignment property of gyroparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of gyroparams and h1 is a filter defined by the
SampleRate property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by
the standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an gyroparams
property. The elements of w are random numbers given by settings of the imuSensor
random stream.
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Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream
and then filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of gyroparams, SampleRate is a property of
imuSensor, and h2 is a filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from
a standard with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

where Temperature is a property of imuSensor, and TemperatureBias is a property of
gyroparams. The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a
property of gyroparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange
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and then setting the resolution:

gyroReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of gyroparams.

Magnetometer
The magnetometer model uses the ground-truth orientation and acceleration inputs, and
the imuSensor and magparams properties to model magnetometer readings.
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Convert to Sensor Frame

The ground-truth acceleration is converted from the local frame to the sensor frame using
the ground-truth orientation:

a = orientation acceleration T

If the orientation is input in quaternion form, it is converted to a rotation matrix before
processing.
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Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model,
which adds axes misalignment and bias:

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of magparams, and α1, α2, and α3 are given by the first,
second, and third elements of the AxesMisalignment property of magparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of magparams and h1 is a filter defined by the
SampleRate property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by
the standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an magparams
property. The elements of w are random numbers given by settings of the imuSensor
random stream.
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Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream
and then filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of magparams, SampleRate is a property of
imuSensor, and h2 is a filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from
a standard with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

where Temperature is a property of imuSensor, and TemperatureBias is a property of
magparams. The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a
property of magparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange
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and then setting the resolution:

magReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of magparams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Classes
accelparams | gyroparams | magparams

System Objects
gpsSensor

Introduced in R2018b
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kinematicTrajectory
Rate-driven trajectory generator

Description
The kinematicTrajectory System object generates trajectories using specified
acceleration and angular velocity.

To generate a trajectory from rates:

1 Create the kinematicTrajectory object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
trajectory = kinematicTrajectory
trajectory = kinematicTrajectory(Name,Value)

Description
trajectory = kinematicTrajectory returns a System object, trajectory, that
generates a trajectory based on acceleration and angular velocity.

trajectory = kinematicTrajectory(Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: trajectory = kinematicTrajectory('SampleRate',200,'Position',
[0,1,10]) creates a kinematic trajectory System object, trajectory, with a sample
rate of 200 Hz and the initial position set to [0,1,10].
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Properties
If a property is tunable, you can change its value at any time.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Position — Position state in local navigation coordinate system (m)
[0 0 0] (default) | 3-element row vector

Position state in the local navigation coordinate system in meters, specified as a three-
element row vector.

Tunable: Yes
Data Types: single | double

Velocity — Velocity state in local navigation coordinate system (m/s)
[0 0 0] (default) | 3-element row vector

Velocity state in the local navigation coordinate system in m/s, specified as a three-
element row vector.

Tunable: Yes
Data Types: single | double

Orientation — Orientation state in local navigation coordinate system
quaternion(1,0,0,0) (default) | scalar quaternion | 3-by-3 real matrix

Orientation state in the local navigation coordinate system, specified as a scalar
quaternion or 3-by-3 real matrix. The orientation is a frame rotation from the local
navigation coordinate system to the current body frame.

Tunable: Yes
Data Types: quaternion | single | double
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AccelerationSource — Source of acceleration state
'Input' (default) | 'Property'

Source of acceleration state, specified as 'Input' or 'Property'.

• 'Input' –– specify acceleration state as an input argument to the kinematic
trajectory object

• 'Property' –– specify acceleration state by setting the Acceleration property

Tunable: No
Data Types: char | string

Acceleration — Acceleration state (m/s2)
[0 0 0] (default) | three-element row vector

Acceleration state in m/s2, specified as a three-element row vector.

Tunable: Yes

Dependencies

To enable this property, set AccelerationSource to 'Property'.
Data Types: single | double

AngularVelocitySource — Source of angular velocity state
'Input' (default) | 'Property'

Source of angular velocity state, specified as 'Input' or 'Property'.

• 'Input' –– specify angular velocity state as an input argument to the kinematic
trajectory object

• 'Property' –– specify angular velocity state by setting the AngularVelocity
property

Tunable: No
Data Types: char | string

AngularVelocity — Angular velocity state (rad/s)
[0 0 0] (default) | three-element row vector

Angular velocity state in rad/s, specified as a three-element row vector.
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Tunable: Yes

Dependencies

To enable this property, set AngularVelocitySource to 'Property'.
Data Types: single | double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive integer

Number of samples per output frame, specified as a positive integer.

Tunable: No

Dependencies

To enable this property, set AngularVelocitySource to 'Property' and
AccelerationSource to 'Property'.
Data Types: single | double

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] =
trajectory(bodyAcceleration,bodyAngularVelocity)
[position,orientation,velocity,acceleration,angularVelocity] =
trajectory(bodyAngularVelocity)
[position,orientation,velocity,acceleration,angularVelocity] =
trajectory(bodyAcceleration)
[position,orientation,velocity,acceleration,angularVelocity] =
trajectory()

Description
[position,orientation,velocity,acceleration,angularVelocity] =
trajectory(bodyAcceleration,bodyAngularVelocity) outputs the trajectory
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state and then updates the trajectory state based on bodyAcceleration and
bodyAngularVelocity.

This syntax is only valid if AngularVelocitySource is set to 'Input' and
AccelerationSource is set to 'Input'.

[position,orientation,velocity,acceleration,angularVelocity] =
trajectory(bodyAngularVelocity) outputs the trajectory state and then updates
the trajectory state based on bodyAngularAcceleration.

This syntax is only valid if AngularVelocitySource is set to 'Input' and
AccelerationSource is set to 'Property'.

[position,orientation,velocity,acceleration,angularVelocity] =
trajectory(bodyAcceleration) outputs the trajectory state and then updates the
trajectory state based on bodyAcceleration.

This syntax is only valid if AngularVelocitySource is set to 'Property' and
AccelerationSource is set to 'Input'.

[position,orientation,velocity,acceleration,angularVelocity] =
trajectory() outputs the trajectory state and then updates the trajectory state.

This syntax is only valid if AngularVelocitySource is set to 'Property' and
AccelerationSource is set to 'Property'.

Input Arguments
bodyAcceleration — Acceleration in body coordinate system (m/s2)
N-by-3 matrix

Acceleration in the body coordinate system in meters per second squared, specified as an
N-by-3 matrix.

N is the number of samples in the current frame.

bodyAngularVelocity — Angular velocity in body coordinate system (rad/s)
N-by-3 matrix

Angular velocity in the body coordinate system in radians per second, specified as an N-
by-3 matrix.
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N is the number of samples in the current frame.

Output Arguments
position — Position in local navigation coordinate system (m)
N-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an N-by-3
matrix.

N is the number of samples in the current frame.
Data Types: single | double

orientation — Orientation in local navigation coordinate system
N-element quaternion column vector | 3-by-3-by-N real array

Orientation in the local navigation coordinate system, returned as an N-by-1 quaternion
column vector or a 3-by-3-by-N real array. Each quaternion or 3-by-3 rotation matrix is a
frame rotation from the local navigation coordinate system to the current body coordinate
system.

N is the number of samples in the current frame.
Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an N-
by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

acceleration — Acceleration in local navigation coordinate system (m/s2)
N-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared,
returned as an N-by-3 matrix.

N is the number of samples in the current frame.
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Data Types: single | double

angularVelocity — Angular velocity in local navigation coordinate system
(rad/s)
N-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned
as an N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions
step Run System object algorithm

Examples

Create Default kinematicTrajectory

Create a default kinematicTrajectory System object™ and explore the relationship
between input, properties, and the generated trajectories.

trajectory = kinematicTrajectory

trajectory = 
  kinematicTrajectory with properties:

               SampleRate: 100
                 Position: [0 0 0]
              Orientation: [1×1 quaternion]
                 Velocity: [0 0 0]
       AccelerationSource: 'Input'
    AngularVelocitySource: 'Input'

By default, the kinematicTrajectory object has an initial position of [0 0 0] and an
initial velocity of [0 0 0]. Orientation is described by a quaternion one (1 + 0i + 0j + 0k).
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The kinematicTrajectory object maintains a visible and writable state in the
properties Position, Velocity, and Orientation. When you call the object, the state
is output and then updated.

For example, call the object by specifying an acceleration and angular velocity relative to
the body coordinate system.

bodyAcceleration = [5,5,0];
bodyAngularVelocity = [0,0,1];
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(bodyAcceleration,bodyAngularVelocity)

position = 1×3

     0     0     0

orientation = quaternion
     1 + 0i + 0j + 0k

velocity = 1×3

     0     0     0

acceleration = 1×3

     5     5     0

angularVelocity = 1×3

     0     0     1

The position, orientation, and velocity output from the trajectory object correspond to
the state reported by the properties before calling the object. The trajectory state is
updated after being called and is observable from the properties:

trajectory

trajectory = 
  kinematicTrajectory with properties:

               SampleRate: 100
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                 Position: [2.5000e-04 2.5000e-04 0]
              Orientation: [1×1 quaternion]
                 Velocity: [0.0500 0.0500 0]
       AccelerationSource: 'Input'
    AngularVelocitySource: 'Input'

The acceleration and angularVelocity output from the trajectory object
correspond to the bodyAcceleration and bodyAngularVelocity, except that they
are returned in the navigation coordinate system. Use the orientation output to rotate
acceleration and angularVelocity to the body coordinate system and verify they
are approximately equivalent to bodyAcceleration and bodyAngularVelocity.

rotatedAcceleration = rotatepoint(orientation,acceleration)

rotatedAcceleration = 1×3

     5     5     0

rotatedAngularVelocity = rotatepoint(orientation,angularVelocity)

rotatedAngularVelocity = 1×3

     0     0     1

The kinematicTrajectory System object™ enables you to modify the trajectory state
through the properties. Set the position to [0,0,0] and then call the object with a specified
acceleration and angular velocity in the body coordinate system. For illustrative purposes,
clone the trajectory object before modifying the Position property. Call both objects
and observe that the positions diverge.

trajectoryClone = clone(trajectory);
trajectory.Position = [0,0,0];

position = trajectory(bodyAcceleration,bodyAngularVelocity)

position = 1×3

     0     0     0

clonePosition = trajectoryClone(bodyAcceleration,bodyAngularVelocity)
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clonePosition = 1×3
10-3 ×

    0.2500    0.2500         0

Create Oscillating Trajectory

This example shows how to create a trajectory oscillating along the North axis of a local
NED coordinate system using the kinematicTrajectory System object™.

Create a default kinematicTrajectory object. The default initial orientation is aligned
with the local NED coordinate system.

traj = kinematicTrajectory

traj = 

  kinematicTrajectory with properties:

               SampleRate: 100
                 Position: [0 0 0]
              Orientation: [1x1 quaternion]
                 Velocity: [0 0 0]
       AccelerationSource: 'Input'
    AngularVelocitySource: 'Input'

Define a trajectory for a duration of 10 seconds consisting of rotation around the East axis
(pitch) and an oscillation along North axis of the local NED coordinate system. Use the
default kinematicTrajectory sample rate.

fs = traj.SampleRate;
duration = 10;

numSamples = duration*fs;

cyclesPerSecond = 1;
samplesPerCycle = fs/cyclesPerSecond;
numCycles = ceil(numSamples/samplesPerCycle);
maxAccel = 20;
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triangle = [linspace(maxAccel,1/fs-maxAccel,samplesPerCycle/2), ...
    linspace(-maxAccel,maxAccel-(1/fs),samplesPerCycle/2)]';
oscillation = repmat(triangle,numCycles,1);
oscillation = oscillation(1:numSamples);

accNED = [zeros(numSamples,2),oscillation];

angVelNED = zeros(numSamples,3);
angVelNED(:,2) = 2*pi;

Plot the acceleration control signal.

timeVector = 0:1/fs:(duration-1/fs);

figure(1)
plot(timeVector,oscillation)
xlabel('Time (s)')
ylabel('Acceleration (m/s)^2')
title('Acceleration in Local NED Coordinate System')
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Generate the trajectory sample-by-sample in a loop. The kinematicTrajectory System
object assumes the acceleration and angular velocity inputs are in the local sensor body
coordinate system. Rotate the acceleration and angular velocity control signals from the
NED coordinate system to the sensor body coordinate system using rotateframe and
the Orientation state. Update a 3-D plot of the position at each time. Add pause to
mimic real-time processing. Once the loop is complete, plot the position over time.
Rotating the accNED and angVelNED control signals to the local body coordinate system
assures the motion stays along the Down axis.

figure(2)
plotHandle = plot3(traj.Position(1),traj.Position(2),traj.Position(3),'bo');
grid on
xlabel('North')
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ylabel('East')
zlabel('Down')
axis([-1 1 -1 1 0 1.5])
hold on

q = ones(numSamples,1,'quaternion');
for ii = 1:numSamples
     accBody = rotateframe(traj.Orientation,accNED(ii,:));
     angVelBody = rotateframe(traj.Orientation,angVelNED(ii,:));

    [pos(ii,:),q(ii),vel,ac] = traj(accBody,angVelBody);

    set(plotHandle,'XData',pos(ii,1),'YData',pos(ii,2),'ZData',pos(ii,3))

    pause(1/fs)
end

figure(3)
plot(timeVector,pos(:,1),'bo',...
     timeVector,pos(:,2),'r.',...
     timeVector,pos(:,3),'g.')
xlabel('Time (s)')
ylabel('Position (m)')
title('NED Position Over Time')
legend('North','East','Down')
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Convert the recorded orientation to Euler angles and plot. Although the orientation of the
platform changed over time, the acceleration always acted along the North axis.

figure(4)
eulerAngles = eulerd(q,'ZYX','frame');
plot(timeVector,eulerAngles(:,1),'bo',...
     timeVector,eulerAngles(:,2),'r.',...
     timeVector,eulerAngles(:,3),'g.')
axis([0,duration,-180,180])
legend('Roll','Pitch','Yaw')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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Generate a Coil Trajectory

This example shows how to generate a coil trajectory using the kinematicTrajectory
System object™.

Create a circular trajectory for a 1000 second duration and a sample rate of 10 Hz. Set
the radius of the circle to 5000 meters and the speed to 80 meters per second. Set the
climb rate to 100 meters per second and the pitch to 15 degrees. Specify the initial
orientation as pointed in the direction of motion.

duration = 1000; % seconds
fs = 10;         % Hz
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N = duration*fs; % number of samples

radius = 5000;   % meters
speed = 80;      % meters per second
climbRate = 50;  % meters per second
initialYaw = 90; % degrees
pitch = 15;      % degrees

initPos = [radius, 0, 0];
initVel = [0, speed, climbRate];
initOrientation = quaternion([initialYaw,pitch,0],'eulerd','zyx','frame');

trajectory = kinematicTrajectory('SampleRate',fs, ...
    'Velocity',initVel, ...
    'Position',initPos, ...
    'Orientation',initOrientation);

Specify a constant acceleration and angular velocity in the body coordinate system.
Rotate the body frame to account for the pitch.

accBody = zeros(N,3);
accBody(:,2) = speed^2/radius;
accBody(:,3) = 0.2;

angVelBody = zeros(N,3);
angVelBody(:,3) = speed/radius;

pitchRotation = quaternion([0,pitch,0],'eulerd','zyx','frame');
angVelBody = rotateframe(pitchRotation,angVelBody);
accBody = rotateframe(pitchRotation,accBody);

Call trajectory with the specified acceleration and angular velocity in the body
coordinate system. Plot the position, orientation, and speed over time.

[position, orientation, velocity] = trajectory(accBody,angVelBody);

eulerAngles = eulerd(orientation,'ZYX','frame');
speed = sqrt(sum(velocity.^2,2));

timeVector = (0:(N-1))/fs;

figure(1)
plot3(position(:,1),position(:,2),position(:,3))
xlabel('North (m)')
ylabel('East (m)')
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zlabel('Down (m)')
title('Position')
grid on

figure(2)
plot(timeVector,eulerAngles(:,1),...
     timeVector,eulerAngles(:,2),...
     timeVector,eulerAngles(:,3))
axis([0,duration,-180,180])
legend('Yaw (Rotation Around Down)','Pitch (Rotation Around East)','Roll (Rotation Around North)')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')
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figure(3)
plot(timeVector,speed)
xlabel('Time (s)')
ylabel('Speed (m/s)')
title('Speed')
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Generate Spiraling Circular Trajectory with No Inputs

Define a constant angular velocity and constant acceleration that describe a spiraling
circular trajectory.

Fs = 100;
r = 10;
speed = 2.5;
initialYaw = 90;

initPos = [r 0 0];
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2-361



initVel = [0 speed 0];
initOrient = quaternion([initialYaw 0 0], 'eulerd', 'ZYX', 'frame');

accBody = [0 speed^2/r 0.01];
angVelBody = [0 0 speed/r];

Create a kinematic trajectory object.

traj = kinematicTrajectory('SampleRate',Fs, ...
    'Position',initPos, ...
    'Velocity',initVel, ...
    'Orientation',initOrient, ...
    'AccelerationSource','Property', ...
    'Acceleration',accBody, ...
    'AngularVelocitySource','Property', ...
    'AngularVelocity',angVelBody);

Call the kinematic trajectory object in a loop and log the position output. Plot the position
over time.

N = 10000;
pos = zeros(N, 3);
for i = 1:N
    pos(i,:) = traj();
end

plot3(pos(:,1), pos(:,2), pos(:,3))
title('Position')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

 kinematicTrajectory
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See Also
waypointTrajectory

Introduced in R2018b

2 Classes — Alphabetical List

2-364



lidarScan
Create object for storing 2-D lidar scan

Description
A lidarScan object contains data for a single 2-D lidar (light detection and ranging)
scan. The lidar scan is a laser scan for a 2-D plane with distances (Ranges) measured
from the sensor to obstacles in the environment at specific angles (Angles). Use this
laser scan object as an input to other robotics algorithms such as matchScans,
controllerVFH, or monteCarloLocalization.

Creation

Syntax
scan = lidarScan(ranges,angles)
scan = lidarScan(cart)

Description
scan = lidarScan(ranges,angles) creates a lidarScan object from the ranges
and angles, that represent the data collected from a lidar sensor. The ranges and
angles inputs are vectors of the same length and are set directly to the Ranges and
Angles properties.

scan = lidarScan(cart) creates a lidarScan object using the input Cartesian
coordinates as an n-by-2 matrix. The Cartesian property is set directly from this input.

scan = lidarScan(scanMsg) creates a lidarScan object from a LaserScan ROS
message object.
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Properties
Ranges — Range readings from lidar
vector

Range readings from lidar, specified as a vector. This vector is the same length as
Angles, and the vector elements are measured in meters.
Data Types: single | double

Angles — Angle of readings from lidar
vector

Angle of range readings from lidar, specified as a vector. This vector is the same length as
Ranges, and the vector elements are measured in radians. Angles are measured counter-
clockwise around the positive z-axis.
Data Types: single | double

Cartesian — Cartesian coordinates of lidar readings
[x y] matrix

Cartesian coordinates of lidar readings, returned as an [x y] matrix. In the lidar
coordinate frame, positive x is forward and positive y is to the left.
Data Types: single | double

Count — Number of lidar readings
scalar

Number of lidar readings, returned as a scalar. This scalar is also equal to the length of
the Ranges and Angles vectors or the number of rows in Cartesian.
Data Types: double

Object Functions
plot Display laser or lidar scan readings
plot Display laser or lidar scan readings
removeInvalidData Remove invalid range and angle data
transformScan Transform laser scan based on relative pose
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Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside
of the sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)
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Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

2 Classes — Alphabetical List

2-368



Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transformedScan = transformScan(refScan,[0.5 0.2 0]);
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Rotate the laser scan by 20 degrees.

rotateScan = transformScan(refScan,[0,0,deg2rad(20)]);

Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300); 
refScan = lidarScan(refRanges,refAngles);

Using the transformScan function, generate a second lidar scan at an x,y offset of
(0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between
them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan into
the frame of the first scan using the relative pose difference. Plot both the original scans
and the aligned scans.

currScan2 = transformScan(currScan,pose);

subplot(2,1,1);
hold on
plot(currScan)
plot(refScan)
title('Original Scans')
hold off

subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Lidar scans require a limited size in code generation. The lidar scans are limited to 4000
points (range and angles) as a maximum.
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See Also
controllerVFH | matchScans | monteCarloLocalization | transformScan

Introduced in R2019b
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plot
Display laser or lidar scan readings

Syntax
plot(scanObj)
plot( ___ ,Name,Value)
linehandle = plot( ___ )

Description
plot(scanObj) plots the lidar scan readings specified in scanObj.

plot( ___ ,Name,Value) provides additional options specified by one or more
Name,Value pair arguments.

linehandle = plot( ___ ) returns a column vector of line series handles, using any of
the arguments from previous syntaxes. Use linehandle to modify properties of the line
series after it is created.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside
of the sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.
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scan = lidarScan(ranges,angles);
plot(scan)

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')
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Input Arguments
scanObj — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: "MaximumRange",5

Parent — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of "Parent" and an
axes object in which the laser scan is drawn. By default, the laser scan is plotted in the
currently active axes.

MaximumRange — Range of laser scan
scan.RangeMax (default) | scalar

Range of laser scan, specified as the comma-separated pair consisting of
"MaximumRange" and a scalar. When you specify this name-value pair argument, the
minimum and maximum x-axis and the maximum y-axis limits are set based on specified
value. The minimum y-axis limit is automatically determined by the opening angle of the
laser scanner.

This name-value pair only works when you input scanMsg as the laser scan.

Outputs
linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique
identifiers, which you can use to query and modify properties of a specific chart line.

See Also
controllerVFH | matchScans | monteCarloLocalization | transformScan

Topics
“Estimate Robot Pose with Scan Matching”

Introduced in R2015a
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lidarSLAM
Perform localization and mapping using lidar scans

Description
The lidarSLAM class performs simultaneous localization and mapping (SLAM) for lidar
scan sensor inputs. The SLAM algorithm takes in lidar scans and attaches them to a node
in an underlying pose graph. The algorithm then correlates the scans using scan
matching. It also searches for loop closures, where scans overlap previously mapped
regions, and optimizes the node poses in the pose graph.

Creation

Syntax
slamObj = lidarSLAM
slamObj = lidarSLAM(mapResolution,maxLidarRange)
slamObj = lidarSLAM(mapResolution,maxLidarRange,maxNumScans)

Description
slamObj = lidarSLAM creates a lidar SLAM object. The default occupancy map size is
20 cells per meter. The maximum range for each lidar scan is 8 meters.

slamObj = lidarSLAM(mapResolution,maxLidarRange) creates a lidar SLAM
object and sets the MapResolution and MaxLidarRange properties based on the inputs.

slamObj = lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies
the upper bound on the number of accepted scans allowed when generating code.
maxNumScans is a positive integer. This scan limit is only required when generating code.
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Properties
PoseGraph — Underlying pose graph that connects scans
poseGraph object

Underlying pose graph that connects scans, specified as a poseGraph object. Adding
scans to lidarSLAM updates this pose graph. When loop closures are found, the pose
graph is optimized using OptimizationFcn.

MapResolution — Resolution of occupancy grid map
20 cells per meter (default) | positive integer

Resolution of the occupancy grid map, specified as a positive integer in cells per meter.
Specify the map resolution on construction.

MaxLidarRange — Maximum range of lidar sensor
8 meters (default) | positive scalar

Maximum range of the lidar sensor, specified as a positive scalar in meters. Specify the
maximum range on construction.

OptimizationFcn — Pose graph optimization function
optimizePoseGraph (default) | function handle

Pose graph optimization function, specified as a function handle. By default, the algorithm
calls the optimizePoseGraph function. To specify your own optimization method, the
class requires the function signature to be:

[updatedPose,stat] = myOptimizationFcn(poseGraph)

poseGraph is a poseGraph object. updatedPose is an n-by-3 vector of [x y theta]
poses listed in sequential node ID order. stat is a structure containing a
ResidualError field as a positive scalar. Use the stat structure to include other
information relevant to your optimization.

LoopClosureThreshold — Threshold for accepting loop closures
100 (default) | positive scalar

Threshold on the score from the scan matching algorithm for accepting loop closures,
specified as a positive scalar. Higher thresholds correspond to a better match, but scores
vary based on sensor data.
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LoopClosureSearchRadius — Search radius for loop closure detection
8 meters (default) | positive scalar

Search radius for loop closure detection, specified as a positive scalar. Increasing this
radius affects performance by increasing search time. Tune this distance based on your
environment and the expected vehicle trajectory.

LoopClosureMaxAttempts — Number of attempts at finding loop closures
1 (default) | positive integer

Number of attempts at finding looping closures, specified as a positive integer. Increasing
the number of attempts affects performance by increasing search time.

LoopClosureAutoRollback — Allow automatic rollback of added loop closures
true (default) | false

Allow automatic rollback of added loop closures, specified as true or false. The SLAM
object tracks the residual error returned by the OptimizationFcn. If it detects a sudden
change in the residual error and this property is true, it rejects (rolls back) the loop
closure.

OptimizationInterval — Number of loop closures accepted to trigger
optimization
1 (default) | positive integer

Number of loop closures accepted to trigger optimization, specified as a positive integer.
By default, the PoseGraph is optimized every time lidarSLAM adds a loop closure.

MovementThreshold — Minimum change in pose required to process scans
[0 0] (default) | [translation rotation]

Minimum change in pose required to process scans, specified as a [translation
rotation] vector. A relative pose change for a newly added scan is calculated as [x y
theta]. If the translation in xy-position or rotation of theta exceeds these thresholds,
the lidarSLAM object accepts the scan and adds a pose is added to the PoseGraph.

Object Functions
addScan Add scan to lidar SLAM map
copy Copy lidar SLAM object
removeLoopClosures Remove loop closures from pose graph
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scansAndPoses Extract scans and corresponding poses
show Plot scans and robot poses

Examples

Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an
optimized pose graph of the robot trajectory. To get an occupancy map from the
associated poses and scans, use the buildMap function.

Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking
garage on a Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a
high frequency and each scan is not needed for SLAM. Therefore, down sample the scans
by selecting only every 40th scan.

load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure
threshold, and search radius. Tune these parameters for your specific robot and
environment. Create the lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;

Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to
compare each added scan to previously added ones. To improve the map, the object
optimizes the pose graph whenever it detects a loop closure. Every 10 scans, display the
stored poses and scans.

for i = 1:numel(scans)
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    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end

View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling
buildMap with the scans and poses. Use the same map resolution and max range you
used with the SLAM object.
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[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')

More About
SLAM
Simultaneous localization and mapping (SLAM) is a general concept for algorithms
correlating different sensor readings to build a map of a vehicle environment and track
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pose estimates. Different algorithms use different types of sensors and methods for
correlating data.

The lidarSLAM algorithm uses lidar scans and odometry information as sensor inputs.
The lidar scans map the environment and are correlated between each other to build an
underlying pose graph of the vehicle trajectory. Odometry information is an optional input
that gives an initial pose estimate for the scans to aid in the correlation. Scan matching
algorithms correlate scans to previously added scans to estimate the relative pose
between them and add them to an underlying pose graph.

The pose graph contains nodes connected by edges that represent the relative poses of
the vehicle. Edges specify constraints on the node as an information matrix. To correct for
drifting pose estimates, the algorithm optimizes over the whole pose graph whenever it
detects loop closures.

The algorithm assumes that data comes from a vehicle navigating an environment and
incrementally getting laser scans along its path. Therefore, scans are first compared to
the most recent scan to identify relative poses and are added to the pose graph
incrementally. However, the algorithm also searches for loop closures, which identify
when the vehicle scans an area that was previously visited.

When working with SLAM algorithms, the environment and vehicle sensors affect the
performance and data correlation quality. Tune your parameters properly for your
expected environment or dataset.

References
[1] Hess, Wolfgang, Damon Kohler, Holger Rapp, and Daniel Andor. "Real-Time Loop

Closure in 2D LIDAR SLAM." 2016 IEEE International Conference on Robotics
and Automation (ICRA). 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:
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slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies
the upper bound on the number of accepted scans allowed when generating code.
maxNumScans is a positive integer. This scan limit is only required when generating code.

See Also
optimizePoseGraph | poseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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addScan
Add scan to lidar SLAM map

Syntax
addScan(slamObj,currScan)
addScan(slamObj,currScan,relPoseEst)
[isAccepted,loopClosureInfo,optimInfo] = addScan( ___ )

Description
addScan(slamObj,currScan) adds a lidar scan, currScan, to the lidar SLAM object,
slamObj. The function uses scan matching to correlate this scan to the most recent one,
then adds it to the pose graph defined in slamObj. If the scan is accepted, addScan
detects loop closures and optimizes based on settings in slamObj.

addScan(slamObj,currScan,relPoseEst) also specifies a relative pose to the latest
lidar scan pose in slamObj. This relative pose improves the scan matching.

[isAccepted,loopClosureInfo,optimInfo] = addScan( ___ ) outputs detailed
information about adding the scan to the SLAM object. isAccepted indicates if the scan
is added or rejected. loopClosureInfo and optimInfo indicate if a loop closure is
detected or the pose graph is optimized.

Examples

Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an
optimized pose graph of the robot trajectory. To get an occupancy map from the
associated poses and scans, use the buildMap function.
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Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking
garage on a Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a
high frequency and each scan is not needed for SLAM. Therefore, down sample the scans
by selecting only every 40th scan.

load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure
threshold, and search radius. Tune these parameters for your specific robot and
environment. Create the lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;

Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to
compare each added scan to previously added ones. To improve the map, the object
optimizes the pose graph whenever it detects a loop closure. Every 10 scans, display the
stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end
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View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling
buildMap with the scans and poses. Use the same map resolution and max range you
used with the SLAM object.

[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')
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Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM
algorithm parameters, sensor data, and underlying pose graph used to build the map.

currScan — Lidar scan reading
lidarScan object
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Lidar scan reading, specified as a lidarScan object. This scan is correlated to the most
recent scan in slamObj using scan matching.

relPoseEst — Relative pose estimate of scan
[x y theta] vector

Relative pose estimate of scan, specified as an [x y theta] vector. This relative pose
improves scan matching.

Output Arguments
isAccepted — Indicates if scan is accepted
true | false

Indicates if scan is accepted, returned as true or false. If the relative pose between
scans is below the MovementThreshold property of slamObj, the scan is rejected. By
default, all scans are accepted.

loopClosureInfo — Loop closure details
structure

Loop closure details, returned as a structure with these fields:

• EdgeIDs –– IDs of newly connected edges in the pose graph, returned as a vector.
• Edges –– Newly added loop closure edges, returned as an n-by-2 matrix of node IDs

that each edge connects.
• Scores –– Scores of newly connected edges in the pose graph returned from scan

matching, returned as a vector.

Note If the LoopClosureAutoRollback property is set to true in slamObj, loop
closure edges can be removed from the pose graph. This property rejects loops closures if
the residual error changes drastically after optimization. Therefore, some of the edge IDs
listed in this structure may not exist in the actual pose graph.

optimInfo — Pose graph optimization details
structure

Pose graph optimization details, returned as a structure with these fields:
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• IsPerformed –– Boolean indicating if optimization is performed when adding this
scan. Optimization performance depends on the OptimizationInterval property in
slamObj.

• IsAccepted –– Boolean indicating if optimization was accepted based on
ResidualError.

• ResidualError –– Error associated with optimization, returned as a scalar.
• LoopClosureRemoved –– List of IDs of loop closure edges removed during

optimization, returned as a vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:

slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies
the upper bound on the number of accepted scans allowed when generating code.
maxNumScans is a positive integer. This scan limit is only required when generating code.

See Also
optimizePoseGraph | poseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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copy
Copy lidar SLAM object

Syntax
newSlamObj = copy(slamObj)

Description
newSlamObj = copy(slamObj) creates a deep copy of slamObj with the same
properties. Any changes made to newSlamObj are not reflected in slamObj.

Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM
algorithm parameters, sensor data, and underlying pose graph used to build the map.

Output Arguments
newSlamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, returned as a lidarSLAM object.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:

slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies
the upper bound on the number of accepted scans allowed when generating code.
maxNumScans is a positive integer. This scan limit is only required when generating code.

See Also
optimizePoseGraph | poseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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removeLoopClosures
Remove loop closures from pose graph

Syntax
removeLoopClosures(slamObj)
removeLoopClosures(slamObj,lcEdgeIDs)

Description
removeLoopClosures(slamObj) removes all loop closures from the underlying pose
graph in slamObj.

removeLoopClosures(slamObj,lcEdgeIDs) removes the loop closure edges with the
specified IDs from the underlying pose graph in slamObj.

Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM
algorithm parameters, sensor data, and underlying pose graph used to build the map

lcEdgeIDs — Loop closure edge IDs
vector of positive integers

Loop closure edge IDs, specified as a vector of positive integers. To find specific edge IDs,
use findEdgeID on the underlying poseGraph object defined in slamObj.

 removeLoopClosures
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:

slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies
the upper bound on the number of accepted scans allowed when generating code.
maxNumScans is a positive integer. This scan limit is only required when generating code.

See Also
optimizePoseGraph | poseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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scansAndPoses
Extract scans and corresponding poses

Syntax
[scans,poses] = scansAndPoses(slamObj)
[scans,poses] = scansAndPoses(slamObj,nodeIDs)

Description
[scans,poses] = scansAndPoses(slamObj) returns the scans used by the
lidarSLAM object as lidarScan objects, along with their associated [x y theta]
poses from the underlying pose graph of slamObj.

[scans,poses] = scansAndPoses(slamObj,nodeIDs) returns the scans and poses
for the specific node IDs. To get the node IDs, see the underlying poseGraph object in
slamObj for the node IDs.

Examples

Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an
optimized pose graph of the robot trajectory. To get an occupancy map from the
associated poses and scans, use the buildMap function.

Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking
garage on a Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a
high frequency and each scan is not needed for SLAM. Therefore, down sample the scans
by selecting only every 40th scan.
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load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure
threshold, and search radius. Tune these parameters for your specific robot and
environment. Create the lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;

Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to
compare each added scan to previously added ones. To improve the map, the object
optimizes the pose graph whenever it detects a loop closure. Every 10 scans, display the
stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end
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View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling
buildMap with the scans and poses. Use the same map resolution and max range you
used with the SLAM object.

[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')
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Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM
algorithm parameters, sensor data, and underlying pose graph used to build the map.

nodeIDs — Node IDs from pose graph
positive integer
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Node IDs from pose graph, specified as a positive integer. Nodes are added to the pose
graph with sequential ID numbers. To get the node IDs, see the underlying poseGraph
object in slamObj for the node IDs.

Output Arguments
scans — Lidar scan readings
lidarScan object

Lidar scan readings, returned as a lidarScan object.

poses — Pose for each scan
n-by-3 matrix | [x y theta] vectors

Pose for each scan, returned as an n-by-3 matrix of [x y theta] vectors. Each row is a
pose that corresponds to a scan in scans.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing lidarSLAM objects for code generation:

slamObj= lidarSLAM(mapResolution,maxLidarRange,maxNumScans) specifies
the upper bound on the number of accepted scans allowed when generating code.
maxNumScans is a positive integer. This scan limit is only required when generating code.

See Also
optimizePoseGraph | poseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
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Introduced in R2019b
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show
Plot scans and robot poses

Syntax
show(slamObj)
show(slamObj,Name,Value)
axes = show( ___ )

Description
show(slamObj) plots all the scans added to the input lidarSLAM object overlaid with
the lidar poses in its underlying pose graph.

show(slamObj,Name,Value) specifies options using Name,Value pair arguments. For
example, "Poses","off" turns off display of the underlying pose graph in slamObj.

axes = show( ___ ) returns the axes handle that the lidar SLAM data is plotted to using
any of the previous syntaxes.

Examples

Perform SLAM Using Lidar Scans

Use a lidarSLAM object to iteratively add and compare lidar scans and build an
optimized pose graph of the robot trajectory. To get an occupancy map from the
associated poses and scans, use the buildMap function.

Load Data and Set Up SLAM Algorithm

Load a cell array of lidarScan objects. The lidar scans were collected in a parking
garage on a Husky® robot from ClearPath Robotics®. Typically, lidar scans are taken at a
high frequency and each scan is not needed for SLAM. Therefore, down sample the scans
by selecting only every 40th scan.
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load garage_fl1_southend.mat scans
scans = scans(1:40:end);

To set up the SLAM algorithm, specify the lidar range, map resolution, loop closure
threshold, and search radius. Tune these parameters for your specific robot and
environment. Create the lidarSLAM object with these parameters.

maxRange = 19.2; % meters
resolution = 10; % cells per meter

slamObj = lidarSLAM(resolution,maxRange);
slamObj.LoopClosureThreshold = 360;
slamObj.LoopClosureSearchRadius = 8;

Add Scans Iteratively

Using a for loop, add scans to the SLAM object. The object uses scan matching to
compare each added scan to previously added ones. To improve the map, the object
optimizes the pose graph whenever it detects a loop closure. Every 10 scans, display the
stored poses and scans.

for i = 1:numel(scans)

    addScan(slamObj,scans{i});
    
    if rem(i,10) == 0
        show(slamObj);
    end
end
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View Occupancy Map

After adding all the scans to the SLAM object, build an occupancyMap map by calling
buildMap with the scans and poses. Use the same map resolution and max range you
used with the SLAM object.

[scansSLAM,poses] = scansAndPoses(slamObj);
occMap = buildMap(scansSLAM,poses,resolution,maxRange);
figure
show(occMap)
title('Occupancy Map of Garage')
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Input Arguments
slamObj — Lidar SLAM object
lidarSLAM object

Lidar SLAM object, specified as a lidarSLAM object. The object contains the SLAM
algorithm parameters, sensor data, and underlying pose graph used to build the map.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: "Poses","off"

Parent — Axes used to plot pose graph
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of
"Parent" and either an Axes or UIAxes object. See axes or uiaxes.

Poses — Display lidar poses
"on" (default) | "off"

Display lidar poses, specified as the comma-separated pair consisting of "Poses" and
"on" or "off".

Output Arguments
axes — Axes used to plot the map
Axes object | UIAxes object

Axes used to plot the map, returned as either an Axes or UIAxes object. See axes or
uiaxes.

See Also
optimizePoseGraph | poseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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likelihoodFieldSensor
Create a likelihood field range sensor model

Description
likelihoodFieldSensor creates a likelihood field sensor model object for range
sensors. This object contains specific sensor model parameters. You can use this object to
specify the model parameters in a monteCarloLocalization object.

Creation

Syntax
lf = likelihoodFieldSensor

Description
lf = likelihoodFieldSensor creates a likelihood field sensor model object for range
sensors.

Properties
Map — Occupancy grid representing the map
binaryOccupancyMap object (default)

Occupancy grid representing the map, specified as a binaryOccupancyMap object. This
object represents the environment of the vehicle as a grid with binary values indicating
obstacles as true (1) and free locations as false (0).

SensorPose — Pose of the range sensor relative to the vehicle
[0 0 0] (default) | three-element vector

2 Classes — Alphabetical List

2-406



Pose of the range sensor relative to the coordinate frame of the vehicle, specified as a
three-element vector, [x y theta].

SensorLimits — Minimum and maximum range of sensor
[0 12] (default) | two-element vector

Minimum and maximum range of sensor, specified as a two-element vector in meters.

NumBeams — Number of beams used for likelihood computation
60 (default) | scalar

Number of beams used for likelihood computation, specified as a scalar. The computation
efficiency can be improved by specifying a smaller number of beams than the actual
number available from the sensor.

MeasurementNoise — Standard deviation for measurement noise
0.2 (default) | scalar

Standard deviation for measurement noise, specified as a scalar.

RandomMeasurementWeight — Weight for probability of random measurement
0.05 (default) | scalar

Weight for probability of random measurement, specified as a scalar. This scalar is the
probability that the measurement is not accurate due to random interference.

ExpectedMeasurementWeight — Weight for probability of expected
measurement
0.95 (default) | scalar

Weight for probability of expected measurement, specified as a scalar. The weight is the
probability of getting a correct range measurement within the noise limits specified in
MeasurementNoise property.

MaxLikelihoodDistance — Maximum distance to find nearest obstacles
2.0 (default) | scalar

Maximum distance to find nearest obstacles, specified as a scalar in meters.
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Limitations
If you change your sensor model after using it with the monteCarloLocalization
object, call release on that object beforehand. For example:

mcl = monteCarloLocalization(...); 
[isUpdated,pose,covariance] = mcl(...); 
release(mcl) 
mcl.SensorModel.PropName = value; 

See Also
monteCarloLocalization | odometryMotionModel

Topics
“Localize TurtleBot Using Monte Carlo Localization”
“Monte Carlo Localization Algorithm”

Introduced in R2019b
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magparams class
Magnetometer sensor parameters

Description
The magparams class creates a magnetometer sensor parameters object. You can use this
object to model a magnetometer when simulating an IMU with imuSensor.

Construction
params = magarams returns an ideal magnetometer sensor parameters object with
default values.

params = magparams(Name,Value) configures magparams object properties using
one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Any
unspecified properties take default values.

Properties
MeasurementRange — Maximum sensor reading (μT)
Inf (default) | real positive scalar

Maximum sensor reading in μT, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements (μT/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in μT/LSB, specified as a real nonnegative scalar
Data Types: single | double
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ConstantBias — Constant sensor offset bias (μT)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in μT, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

AxesMisalignment — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the
range [0,100]

Sensor axes skew in %, specified as a real scalar or 3-element row vector with values
ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

NoiseDensity — Power spectral density of sensor noise (μT/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in μT/√Hz, specified as a real scalar or 3-element
row vector. Any scalar input is converted into a real 3-element row vector where each
element has the input scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (μT)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in μT, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor (μT/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (μT/√Hz), specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element
has the input scalar value.
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Data Types: single | double

TemperatureBias — Sensor bias from temperature (μT/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (μT/℃), specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element
has the input scalar value.
Data Types: single | double

TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the
range [0,100]

Scale factor error from temperature in (%/℃), specified as a real scalar or 3-element row
vector with values ranging from 0 to 100. Any scalar input is converted into a real 3-
element row vector where each element has the input scalar value.
Data Types: single | double

Examples
Generate Magnetometer Data from Stationary Inputs

Generate magnetometer data for an imuSensor object from stationary inputs.

Generate a magnetometer parameter object with a maximum sensor reading of 1200 μT
and a resolution of 0.1 μT/LSB. The constant offset bias is 1 μT. The sensor has a power
spectral density of 0 . 6 0 . 6 0 . 9

100  μT/ Hz. The bias from temperature is [0.8 0.8 2.4]
μT/0C. The scale factor error from temperature is 0.1 %/0C.

params = magparams('MeasurementRange',1200,'Resolution',0.1,'ConstantBias',1,'NoiseDensity',[0.6 0.6 0.9]/sqrt(100),'TemperatureBias',[0.8 0.8 2.4],'TemperatureScaleFactor',0.1);

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object
using the magnetometer parameter object.

Fs = 100;
numSamples = 1000;
t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('accel-mag','SampleRate', Fs, 'Magnetometer', params);
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Generate magnetometer data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);
 
[~, magData] = imu(acc, angvel, orient);

Plot the resultant magnetometer data.

plot(t, magData)
title('Magnetometer')
xlabel('s')
ylabel('\mu T')
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
accelparams | gyroparams

System Objects
imuSensor

Introduced in R2018b
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insfilterMARG
Estimate pose from MARG and GPS data

Description
The insfilterMARG object implements sensor fusion of MARG and GPS data to estimate
pose in the NED (or ENU) reference frame. MARG (magnetic, angular rate, gravity) data
is typically derived from magnetometer, gyroscope, and accelerometer sensors. The filter
uses a 22-element state vector to track the orientation quaternion, velocity, position,
MARG sensor biases, and geomagnetic vector. The insfilterMARG object uses an
extended Kalman filter to estimate these quantities.

Creation

Syntax
filter = insfilterMARG
filter = insfilterMARG('ReferenceFrame',RF)
filter = insfilterMARG( ___ ,Name,Value)

Description
filter = insfilterMARG creates an insfilterMARG object with default property
values.

filter = insfilterMARG('ReferenceFrame',RF) allows you to specify the
reference frame, RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU'
(East-North-Up). The default value is 'NED'.

filter = insfilterMARG( ___ ,Name,Value) also allows you set properties of the
created filter using one or more name-value pairs. Enclose each property name in
single quotes.
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Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the inertial measurement unit (IMU) in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude,
longitude, and altitude). Altitude is the height above the reference ellipsoid model,
WGS84. The reference location units are [degrees degrees meters].
Data Types: single | double

GyroscopeNoise — Multiplicative process noise variance from gyroscope (rad/s)2

1e-9 (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar
or 3-element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to the x, y,
and z axes of the gyroscope.

Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope
bias (rad/s)2

1e-10 (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope bias in (rad/s)2, specified as a
scalar or 3-element row vector of positive real numbers.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the
noise in the x, y, and z axes of the gyroscope bias, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to each
axis.
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Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from
accelerometer (m/s2)2

1e-4 (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a
scalar or 3-element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the
noise in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each
axis.

Data Types: single | double

AccelerometerBiasNoise — Multiplicative process noise variance from
accelerometer bias (m/s2)2

1e-4 (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as
a scalar or 3-element row vector of positive real numbers.

• If AccelerometerBiasNoise is specified as a row vector, the elements correspond
to the noise in the x, y, and z axes of the accelerometer bias, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to
each axis.

Data Types: single | double

GeomagneticVectorNoise — Additive process noise for geomagnetic vector (µT2)
1e-6 (default) | positive scalar | 3-element row vector

Additive process noise for geomagnetic vector in µT2, specified as a scalar or 3-element
row vector of positive real numbers.

• If GeomagneticVectorNoise is specified as a row vector, the elements correspond
to the noise in the x, y, and z axes of the geomagnetic vector, respectively.

• If GeomagneticVectorNoise is specified as a scalar, the single element is applied to
each axis.

Data Types: single | double
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MagnetometerBiasNoise — Additive process noise for magnetometer bias (µT2)
0.1 (default) | positive scalar | 3-element row vector

Additive process noise for magnetometer bias in µT2, specified as a scalar or 3-element
row vector.

• If MagnetometerBiasNoise is specified as a row vector, the elements correspond to
the noise in the x, y, and z axes of the magnetometer bias, respectively.

• If MagnetometerBiasNoise is specified as a scalar, the single element is applied to
each axis.

Data Types: single | double

State — State vector of extended Kalman filter
22-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion
parts)

N/A 1:4

Position (NED or ENU) m 5:7
Velocity (NED or ENU) m/s 8:10
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector
(NED or ENU)

µT 17:19

Magnetometer Bias (XYZ) µT 20:22

Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(22)*1e-6 (default) | 22-by-22 matrix

State error covariance for the extended Kalman filter, specified as a 22-by-22-element
matrix, or real numbers.
Data Types: single | double
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Object Functions
correct Correct states using direct state measurements
fusegps Correct states using GPS data
fusemag Correct states using magnetometer data
pose Current orientation and position estimate
predict Update states using accelerometer and gyroscope data
reset Reset internal states
stateinfo Display state vector information

Examples

Estimate Pose of UAV

This example shows how to estimate the pose of an unmanned aerial vehicle (UAV) from
logged sensor data and ground truth pose.

Load the logged sensor data and ground truth pose of an UAV.

load uavshort.mat

Initialize the insfilterMARG filter object.

f = insfilterMARG;
f.IMUSampleRate = imuFs;
f.ReferenceLocation = refloc;
f.AccelerometerBiasNoise = 2e-4;
f.AccelerometerNoise = 2;
f.GyroscopeBiasNoise = 1e-16;
f.GyroscopeNoise = 1e-5;
f.MagnetometerBiasNoise = 1e-10;
f.GeomagneticVectorNoise = 1e-12;
f.StateCovariance = 1e-9*ones(22);
f.State = initstate;
 
gpsidx = 1;
N = size(accel,1);
p = zeros(N,3);
q = zeros(N,1,'quaternion');

Fuse accelerometer, gyroscope, magnetometer, and GPS data.
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for ii = 1:size(accel,1)               % Fuse IMU
   f.predict(accel(ii,:), gyro(ii,:));
        
   if ~mod(ii,fix(imuFs/2))            % Fuse magnetometer at 1/2 the IMU rate
       f.fusemag(mag(ii,:),Rmag);
   end
  
   if ~mod(ii,imuFs)                   % Fuse GPS once per second
       f.fusegps(lla(gpsidx,:),Rpos,gpsvel(gpsidx,:),Rvel);
       gpsidx = gpsidx + 1;
   end
 
   [p(ii,:),q(ii)] = pose(f);           %Log estimated pose
end

Calculate and display RMS errors.

posErr = truePos - p;
qErr = rad2deg(dist(trueOrient,q));
pRMS = sqrt(mean(posErr.^2));
qRMS = sqrt(mean(qErr.^2));
fprintf('Position RMS Error\n\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

Position RMS Error
    X: 0.57, Y: 0.53, Z: 0.68 (meters)

    
fprintf('Quaternion Distance RMS Error\n\t%.2f (degrees)\n\n',qRMS);

Quaternion Distance RMS Error
    0.28 (degrees)

Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterMARG uses a 22-axis extended Kalman filter structure to estimate pose in the
NED reference frame. The state is defined as:
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x =

q0
q1
q2
q3

positionN
positionE
positionD

νN
νE
νD

ΔθbiasX

ΔθbiasY

ΔθbiasZ
ΔνbiasX
ΔνbiasY
ΔνbiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents
a frame rotation from the platform's current orientation to the local NED coordinate
system.

• positionN, positionE, positionD –– Position of the platform in the local NED coordinate
system.

• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.

2 Classes — Alphabetical List

2-420



• ΔθbiasX, ΔθbiasY, ΔθbiasZ –– Bias in the integrated gyroscope reading.
• ΔνbiasX, ΔνbiasY, ΔνbiasZ –– Bias in the integrated accelerometer reading.
• geomagneticFieldVectorN, geomagneticFieldVectorE, geomagneticFieldVectorD ––

Estimate of the geomagnetic field vector at the reference location.
• magbiasX, magbiasY, magbiasZ –– Bias in the magnetometer readings.

Given the conventional formation of the predicted state estimate,

xk k− 1 = f (x k− 1 k− 1, uk)

uk is controlled by accelerometer and gyroscope data that has been converted to delta
velocity and delta angle through trapezoidal integration. The predicted state estimation
is:
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xk k− 1 =

q0− q1
ΔθX− ΔθbiasX

2 − q2
ΔθY − ΔθbiasY

2 − q3
ΔθZ− ΔθbiasZ

2

q1 + q0
ΔθX− ΔθbiasX

2 − q3
ΔθY − ΔθbiasY

2 + q2
ΔθZ− ΔθbiasZ

2

q2 + q3
ΔθX− ΔθbiasX

2 + q0
ΔθY − ΔθbiasY

2 − q1
ΔθZ− ΔθbiasZ

2

q3− q2
ΔθX− ΔθbiasX

2 + q1
ΔθY − ΔθbiasY

2 + q0
ΔθZ− ΔθbiasZ

2
positionN + Δt νN
positionE + Δt νE
positionD + Δt νD

νN + Δt gN + ΔνX− ΔνbiasX q0
2 + q1

2− q2
2− q3

2 − 2 ΔνY − ΔνbiasY q0q3− q1q2 + 2 ΔνZ− ΔνbiasZ q0q2 + q1q3

νE + Δt gE + ΔνY − ΔνbiasY q0
2− q1

2 + q2
2− q3

2 + 2 ΔνX− ΔνbiasX q0q3 + q1q2 − 2 ΔνZ− ΔνbiasZ q0q1− q2q3

νD + Δt gD + ΔνZ− ΔνbiasZ q0
2− q1

2− q2
2 + q3

2 − 2 ΔνX− ΔνbiasX q0q2− q1q3 + 2 ΔνY − ΔνbiasY q0q1 + q2q3

ΔθbiasX

ΔθbiasY

ΔθbiasZ
ΔνbiasX
ΔνbiasY
ΔνbiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ
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where

• ΔθX, ΔθY, ΔθZ –– Integrated gyroscope reading.
• ΔνX, ΔνY, ΔνZ –– Integrated accelerometer readings.
• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilterErrorState | insfilterNonholonomic

Introduced in R2018b
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correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and
state estimation error covariance based on the measurement and measurement
covariance. The measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

idx — State vector Index of measurement to correct
N-element vector of increasing integers in the range [1,22]

State vector index of measurement to correct, specified as an N-element vector of
increasing integers in the range [1, 22].

The state values represent:

State Units Index
Orientation (quaternion
parts)

 1:4

Position (NED) m 5:7
Velocity (NED) m/s 8:10
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State Units Index
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector
(NED)

µT 17:19

Magnetometer Bias (XYZ) µT 20:22

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of
elements of the index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N
is the number of elements of the index argument, idx.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b
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fusegps
Correct states using GPS data

Syntax
fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS data to correct the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a
real finite 3-element row vector. Latitude and longitude are in degrees with north and
east being positive. Altitude is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double
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velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-
element row vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

Velocity measurement covariance of the GPS receiver in the local NED coordinate system
in m/s2, specified as a 3-by-3 matrix.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
MARGGPSFuser | insfilter

Introduced in R2018b
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fusemag
Correct states using magnetometer data

Syntax
fusemag(FUSE,magReadings,magReadingsCovariance)

Description
fusemag(FUSE,magReadings,magReadingsCovariance) fuses magnetometer data
to correct the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row
vector, or 3-by-3 matrix.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b
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pose
Current orientation and position estimate

Syntax
[position,orientation ] = pose(FUSE)
[position,orientation ] = pose(FUSE,format)

Description
[position,orientation ] = pose(FUSE) returns the current estimate of the pose.

[position,orientation ] = pose(FUSE,format) returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or
'rotmat' for a rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate in the local NED coordinate system (m)
3-element row vector
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Position estimate in the local NED coordinate system in meters, returned as a 3-element
row vector.
Data Types: single | double

orientation — Orientation estimate in the local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, specified as a scalar quaternion
or 3-by-3 rotation matrix. The quaternion or rotation matrix represents a frame rotation
from the local NED reference frame to the body reference frame.
Data Types: single | double | quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b
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predict
Update states using accelerometer and gyroscope data

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope
data to update the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate
system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system
(rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b
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reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their default
values.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b
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stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the
associated units.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b
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monteCarloLocalization
Localize robot using range sensor data and map

Description
The monteCarloLocalization System object creates a Monte Carlo localization (MCL)
object. The MCL algorithm is used to estimate the position and orientation of a vehicle in
its environment using a known map of the environment, lidar scan data, and odometry
sensor data.

To localize the vehicle, the MCL algorithm uses a particle filter to estimate the vehicle’s
position. The particles represent the distribution of likely states for the vehicle, where
each particle represents a possible vehicle state. The particles converge around a single
location as the vehicle moves in the environment and senses different parts of the
environment using a range sensor. An odometry sensor measures the vehicle’s motion.

A monteCarloLocalization object takes the pose and lidar scan data as inputs. The
input lidar scan sensor data is given in its own coordinate frame, and the algorithm
transforms the data according to the SensorModel.SensorPose property that you must
specify. The input pose is computed by integrating the odometry sensor data over time. If
the change in pose is greater than any of the specified update thresholds,
UpdateThresholds, then the particles are updated and the algorithm computes a new
state estimate from the particle filter. The particles are updated using this process:

1 The particles are propagated based on the change in the pose and the specified
motion model, MotionModel.

2 The particles are assigned weights based on the likelihood of receiving the range
sensor reading for each particle. These likelihood weights are based on the sensor
model you specify in SensorModel.

3 Based on the ResamplingInterval property, the particles are resampled from the
posterior distribution, and the particles of low weight are eliminated. For example, a
resampling interval of 2 means that the particles are resampled after every other
update.

The outputs of the object are the estimated pose and covariance, and the value of
isUpdated. This estimated state is the mean and covariance of the highest weighted
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cluster of particles. The output pose is given in the map’s coordinate frame that is
specified in the SensorModel.Map property. If the change in pose is greater than any of
the update thresholds, then the state estimate has been updated and isUpdated is true.
Otherwise, isUpdated is false and the estimate remains the same. For continuous
tracking the best estimate of a robot's state, repeat this process of propagating particles,
evaluating their likelihood, and resampling.

To estimate robot pose and covariance using lidar scan data:

1 Create the monteCarloLocalization object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
mcl = monteCarloLocalization
mcl = monteCarloLocalization(Name,Value)

Description
mcl = monteCarloLocalization returns an MCL object that estimates the pose of a
vehicle using a map, a range sensor, and odometry data. By default, an empty map is
assigned, so a valid map assignment is required before using the object.

mcl = monteCarloLocalization(Name,Value) creates an MCL object with
additional options specified by one or more Name,Value pair arguments.

Name is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Properties
InitialPose — Initial pose of vehicle
[0 0 0] (default) | three-element vector

Initial pose of the vehicle used to start localization, specified as a three-element vector, [x
y theta], that indicates the position and heading of the vehicle. Initializing the MCL
object with an initial pose estimate enables you to use a smaller value for the maximum
number of particles and still converge on a location.

InitialCovariance — Covariance of initial pose
diag([1 1 1]) (default) | diagonal matrix | three-element vector | scalar

Covariance of the Gaussian distribution for the initial pose, specified as a diagonal matrix.
Three-element vector and scalar inputs are converted to a diagonal matrix. This matrix
gives an estimate of the uncertainty of the InitialPose.

GlobalLocalization — Flag to start global localization
false (default) | true

Flag indicating whether to perform global localization, specified as false or true. The
default value, false, initializes particles using the InitialPose and
InitialCovariance properties. A true value initializes uniformly distributed particles
in the entire map and ignores the InitialPose and InitialCovariance properties.
Global localization requires a large number of particles to cover the entire workspace.
Use global localization only when the initial estimate of vehicle location and orientation is
not available.

ParticleLimits — Minimum and maximum number of particles
[500 5000] (default) | two-element vector

Minimum and maximum number of particles, specified as a two-element vector, [min
max].

SensorModel — Likelihood field sensor model
likelihoodFieldSensor object

Likelihood field sensor model, specified as a likelihoodFieldSensor object. The
default value uses the default likelihoodFieldSensor object. After using the object to
get output, call release on the object to make changes to SensorModel. For example:

mcl = monteCarloLocalization(_); 
[isUpdated,pose,covariance] = mcl(_); 
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release(mcl) 
mcl.SensorModel.PropName = value; 

MotionModel — Odometry motion model for differential drive
odometryMotionModel object

Odometry motion model for differential drive, specified as an odometryMotionModel
object. The default value uses the default odometryMotionModel object. After using the
object to get output, call release on the object to make changes to MotionModel. For
example:

mcl = monteCarloLocalization(_); 
[isUpdated,pose,covariance] = mcl(_); 
release(mcl) 
mcl.MotionModel.PropName = value; 

UpdateThresholds — Minimum change in states required to trigger update
[0.2 0.2 0.2] (default) | three-element vector

Minimum change in states required to trigger update, specified as a three-element vector.
The localization updates the particles if the minimum change in any of the [x y theta]
states is met. The pose estimate updates only if the particle filter is updated.

ResamplingInterval — Number of filter updates between resampling of
particles
1 (default) | positive integer

Number of filter updates between resampling of particles, specified as a positive integer.

UseLidarScan — Use lidarScan object as scan input
false (default) | true

Use a lidarScan object as scan input, specified as either false or true.

Usage

Syntax
[isUpdated,pose,covariance] = mcl(odomPose,scan)
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[isUpdated,pose,covariance] = mcl(odomPose,ranges,angles)

Description
[isUpdated,pose,covariance] = mcl(odomPose,scan) estimates the pose and
covariance of a vehicle using the MCL algorithm. The estimates are based on the pose
calculated from the specified vehicle odometry, odomPose, and the specified lidar scan
sensor data, scan. mcl is the monteCarloLocalization object. isUpdated indicates
whether the estimate is updated based on the UpdateThreshold property.

To enable this syntax, you must set the UseLidarScan property to true. For example:

mcl = monteCarloLocalization('UseLidarScan',true);
...
[isUpdated,pose,covariance] = mcl(odomPose,scan);

[isUpdated,pose,covariance] = mcl(odomPose,ranges,angles) specifies the
lidar scan data as ranges and angles.

Input Arguments
odomPose — Pose based on odometry
three-element vector

Pose based on odometry, specified as a three-element vector, [x y theta]. This pose is
calculated by integrating the odometry over time.

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.
Dependencies

To use this argument, you must set the UseLidarScan property to true.

mcl.UseLidarScan = true;

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector with elements measured in meters.
These range values are distances from a laser scan sensor at the specified angles. The
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ranges vector must have the same number of elements as the corresponding angles
vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector with elements measured in radians.
These angle values are the angles at which the specified ranges were measured. The
angles vector must be the same length as the corresponding ranges vector.

Output Arguments
isUpdated — Flag for pose update
logical

Flag for pose update, returned as a logical. If the change in pose is more than any of the
update thresholds, then the output is true. Otherwise, it is false. A true output means
that updated pose and covariance are returned. A false output means that pose and
covariance are not updated and are the same as at the last update.

pose — Current pose estimate
three-element vector

Current pose estimate, returned as a three-element vector, [x y theta]. The pose is
computed as the mean of the highest-weighted cluster of particles.

covariance — Covariance estimate for current pose
matrix

Covariance estimate for current pose, returned as a matrix. This matrix gives an estimate
of the uncertainty of the current pose. The covariance is computed as the covariance of
the highest-weighted cluster of particles.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)
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Specific to monteCarloLocalization
getParticles Get particles from localization algorithm

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Estimate Vehicle Pose from Range Sensor Data

Create a monteCarloLocalization object, assign a sensor model, and calculate a pose
estimate using the step method.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Create a monteCarloLocalization object. Set the UseLidarScan property to true.

mcl = monteCarloLocalization;
mcl.UseLidarScan = true;

Assign a sensor model with an occupancy grid map to the object.

sm = likelihoodFieldSensorModel;
p = zeros(200,200);
sm.Map = occupancyMap(p,20);
mcl.SensorModel = sm;

Create sample laser scan data input.

ranges = 10*ones(1,300);
ranges(1,130:170) = 1.0;
angles = linspace(-pi/2,pi/2,300);
odometryPose = [0 0 0];
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Create a lidarScan object by specifying the ranges and angles.

scan = lidarScan(ranges,angles);

Estimate vehicle pose and covariance.

[isUpdated,estimatedPose,covariance] = mcl(odometryPose,scan)

isUpdated = logical
   1

estimatedPose = 1×3

    0.0343    0.0193    0.0331

covariance = 3×3

    0.9467    0.0048         0
    0.0048    0.9025         0
         0         0    1.0011

References
[1] Thrun, Sebatian, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press,

2005.

[2] Dellaert, F., D. Fox, W. Burgard, and S. Thrun. "Monte Carlo Localization for Mobile
Robots." Proceedings 1999 IEEE International Conference on Robotics and
Automation.

See Also
lidarScan | likelihoodFieldSensor | odometryMotionModel

Topics
“Localize TurtleBot Using Monte Carlo Localization”
“Monte Carlo Localization Algorithm”
Class Attributes (MATLAB)
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Property Attributes (MATLAB)

Introduced in R2019b
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getParticles
Get particles from localization algorithm

Syntax
[particles,weights] = getParticles(mcl)

Description
[particles,weights] = getParticles(mcl) returns the current particles used by
the monteCarloLocalization object. particles is an n-by-3 matrix that contains the
location and orientation of each particle. Each row has a corresponding weight value
specified in weights. The number of rows can change with each iteration of the MCL
algorithm. Use this method to extract the particles and analyze them separately from the
algorithm.

Examples

Get Particles from Monte Carlo Localization Algorithm

Get particles from the particle filter used in the Monte Carlo Localization object.

Create a map and a Monte Carlo localization object.

map = binaryOccupancyMap(10,10,20);
mcl = monteCarloLocalization(map);

Create robot data for the range sensor and pose.

ranges = 10*ones(1,300);
ranges(1,130:170) = 1.0;
angles = linspace(-pi/2,pi/2,300);
odometryPose = [0 0 0];

Initialize particles using step.
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[isUpdated,estimatedPose,covariance] = step(mcl,odometryPose,ranges,angles);

Get particles from the updated object.

[particles,weights] = getParticles(mcl);

Input Arguments
mcl — monteCarloLocalization object
handle

monteCarloLocalization object, specified as an object handle.

Output Arguments
particles — Estimation particles
n-by-3 vector

Estimation particles, returned as an n-by-3 vector, [x y theta]. Each row corresponds
to the position and orientation of a single particle. The length can change with each
iteration of the algorithm.

weights — Weights of particles
n-by-1 vector

Weights of particles, returned as a n-by-1 vector. Each row corresponds to the weight of
the particle in the matching row of particles. These weights are used in the final
estimate of the pose of the vehicle. The length can change with each iteration of the
algorithm.

See Also
monteCarloLocalization

Topics
“Monte Carlo Localization Algorithm”
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Introduced in R2019b
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navPath
Planned path

Description
The navPath object stores paths that are typically created by geometric path planners.
Path points are stored as states in an associated state space.

Creation

Syntax
path = navPath
path = navPath(space)
path = navPath(space,states)

Description
path = navPath creates a path object, path, using the SE2 state space with default
settings.

path = navPath(space) creates a path object with state space specified by space.
The space input also sets the value of the StateSpace property.

path = navPath(space,states) allows you to initialize the path with state samples
given by states. Specify states as a matrix of state samples. States that are outside of
the StateBounds of the state space object are reduced to the bounds. The states
input also sets the value of the States property.

Properties
StateSpace — State space for path
stateSpaceSE2 (default) | state space object
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State space for the path, specified as a state space object. Each state in the path is a
sample from the specified state space. You can use objects such as stateSpaceSE2,
stateSpaceDubins, or stateSpaceReedsShepp as a state space object. You can also
customize a state space object using the nav.StateSpace object.
Data Types: object

States — States of path
zeros(0,StateSpace.NumStateVariables) (default) | real-valued M-by-N matrix

States of the path, specified as a real-valued M-by-N matrix. M is the number of states in
the path, and N is the dimension of each state. You can only set this property during
object creation or using the append function.
Data Types: double

NumStates — Number of state samples in path
0 (default) | nonnegative integer

Number of state samples in the path, specified as a nonnegative integer. The number is
the same as the number of rows of the state matrix specified in the States property.
Data Types: double

Object Functions
append Add states to end of path
copy Create copy of path object
interpolate Interpolate points along path
pathLength Length of path

Examples

Create navPath Based on Multiple Waypoints

Create a navPath object based on multiple waypoints in a Dubins space.

dubinsSpace = stateSpaceDubins([0 25; 0 25; -pi pi])

dubinsSpace = 
  stateSpaceDubins with properties:
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   SE2 Properties
                 Name: 'SE2 Dubins'
          StateBounds: [3x2 double]
    NumStateVariables: 3

   Dubins Vehicle Properties
     MinTurningRadius: 1

pathobj = navPath(dubinsSpace)

pathobj = 
  navPath with properties:

    StateSpace: [1x1 stateSpaceDubins]
        States: [0x3 double]
     NumStates: 0

waypoints = [...
    8 10 pi/2;
    10 12 pi/4;
    12 17 pi/2;
    11 10 -pi];
append(pathobj, waypoints);

Interpolate that path so that it contains exactly 250 points.

interpolate(pathobj, 250)

Visualize the interpolated path and the original waypoints.

figure;
grid on;
axis equal;
hold on;
plot(pathobj.States(:,1), pathobj.States(:,2), ".b");
plot(waypoints(:,1), waypoints(:,2), "*r", "MarkerSize", 10)
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Calculate length of path.

len = pathLength(pathobj);
disp("Path length = " + num2str(len))

Path length = 19.37

See Also
nav.StateSpace | pathmetrics | stateSpaceDubins | stateSpaceReedsShepp |
stateSpaceSE2
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append
Add states to end of path

Syntax
append(path,states)

Description
append(path,states) appends the state samples, states, to the end of the path.

Input Arguments
path — path object
navPath object

Path object, specified as a navPath object.
Data Types: object

states — states of path
real-valued M-by-N matrix

States of the path, specified as a real-valued M-by-N matrix. M is the number of states
appended to the path, and N is the dimension of each state. The dimension of each state
is governed by the state space defined in the StateSpace property of navPath. States
outside of the StateBounds of the state space of path are pruned to the bounds.
Example: [ 0 0 0; 1 1 1]
Data Types: double

See Also
navPath
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interpolate
Interpolate points along path

Syntax
interpolate(path,numStates)

Description
interpolate(path,numStates) inserts a number of states in the path and ensures the
distribution of all the points in the path to be uniform. The function preserves all the
existing states in the path. The value of numStates must be greater than or equal to the
number of existing states in the path.

Input Arguments
path — Path object
navpath object

Path object, specified as a navPath object.
Data Types: object

numStates — Number of states
nonnegative integer

Number of states inserted in the path, specified as a nonnegative integer. Its value must
be greater than or equal to the number of existing states in the path.
Data Types: double

See Also
navPath

 interpolate
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pathLength
Length of path

Syntax
len = pathLength(path)

Description
len = pathLength(path) returns the total length of path by summing the distances
between every sequential pair of states in the path. The function uses the state space
object associated with path to calculate the distance between each state pair.

Input Arguments
path — Path object
navpath object

Path object, specified as a navPath object.
Data Types: object

Output Arguments
len — Length of path
nonnegative scalar

Length of the path, returned as a nonnegative scalar.

See Also
navPath
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nav.StateSpace class
Package: nav

Create state space for path planning

Description
nav.StateSpace is an interface for state spaces used for path planning. Derive from this
class if you want to define your own state space. This representation allows for sampling,
interpolation, and calculating distances between spaces in the state space.

To create a sample template for generating your own state space class, call
createPlanningTemplate. For our implementations of the state space class, see “State
Spaces”.

The nav.StateSpace class is a handle class.

Class Attributes
Abstract true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation

Syntax
ssObj = nav.StateSpace(Name,NumStateVariables,Bounds)

Description
ssObj = nav.StateSpace(Name,NumStateVariables,Bounds) creates a state
space object with a given name and state bounds. NumStateVariables specifies the
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number of state variables. This constructor can only be called from a derived class.
Create your own class definition using createPlanningTemplate.

Properties

Public Properties
NumStateVariables — Number of variables in state space
positive numeric scalar

Number of variables in state space, specified as a positive numeric scalar. This property is
the dimension of the state space.
Example: 3

Attributes:

SetAccess - immutable

StateBounds — Min and max bounds of state variables
[min max] | n-by-2 matrix

Min and max bounds of state variables, specified as a [min max] n-by-2 matrix. This
property depends on NumStateVariables, where n is the number of state variables.
When specifying on construction, use the Bounds input.
Example: [-10 10; -10 10; -pi pi]

Attributes:

GetAccess public
SetAccess protected
Dependent true

Data Types: double

Protected Properties
Name — Name of state space object
string scalar | character vector
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Name of the state space object, specified as a string scalar or character vector.
Example: "customSE2StateSpace"

Attributes:

GetAccess protected
SetAccess protected

Methods

Public Methods
copy Copy array of handle objects
distance Distance between two states
enforceStateBounds Limit state to state bounds
interpolate Interpolate between states
sampleGaussian Sample state using Gaussian distribution
sampleUniform Sample state using uniform distribution

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state space definition and sampler to use with path
planning algorithms. A simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateSpace class. For this example, create a property for the
uniform and normal distributions. You can specify any additional user-defined properties
here.
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classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
    end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and
define its boundaries. Alternatively, you can add input arguments to the function and pass
the variables in when you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values

using predefined NormalDistribution and UniformDistribution classes.
• Specify any other user-defined property values here.

 methods
        function obj = MyCustomStateSpace
            spaceName = "MyCustomStateSpace";
            numStateVariables = 3;
            stateBounds = [-100 100;  % [min max]
                           -100 100;
                           -100 100];
            
            obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
            
            obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
            obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
            % User-defined property values here
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same name, state bounds, and distributions.
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        function copyObj = copy(obj)
            copyObj = feval(class(obj));
            copyObj.StateBounds = obj.StateBounds;
            copyObj.UniformDistribution = obj.UniformDistribution.copy;
            copyObj.NormalDistribution = obj.NormalDistribution.copy;
        end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the
state values get saturated at the minimum or maximum values for the state bounds.

        function boundedState = enforceStateBounds(obj, state)
            nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
            boundedState = state;
            boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
                obj.StateBounds(:,2)');
            
        end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes
to constrain the uniform distribution to a nearby state within a certain distance and
sample multiple states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the
varying input arguments.

         function state = sampleUniform(obj, varargin)
            narginchk(1,4);
            [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
            
            obj.UniformDistribution.RandomVariableLimits = stateBounds;
            state = obj.UniformDistribution.sample(numSamples);
        end
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Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple
syntaxes for sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

        function state = sampleGaussian(obj, meanState, stdDev, varargin)    
            narginchk(3,4);
            
            [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
            
            obj.NormalDistribution.Mean = meanState;
            obj.NormalDistribution.Covariance = diag(stdDev.^2);
            
            state = obj.NormalDistribution.sample(numSamples);
            state = obj.enforceStateBounds(state);
            
        end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input,
fraction, to determine how to sample along the path between two states. For this
example, define a basic linear interpolation method using the difference between states.

        function interpState = interpolate(obj, state1, state2, fraction)
            narginchk(4,4);
            [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
            
            stateDiff = state2 - state1;
            interpState = state1 + fraction' * stateDiff;
        end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the
state1 and state2 inputs to define the start and end positions. Both inputs can be a
single state (row vector) or multiple states (matrix of row vectors). For this example,
calculate the distance based on the Euclidean distance between each pair of state
positions.

        function dist = distance(obj, state1, state2)
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            narginchk(3,3);
            
            nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
            nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

            stateDiff = bsxfun(@minus, state2, state1);
            dist = sqrt( sum( stateDiff.^2, 2 ) );
        end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an
object for your state space.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nav.StateValidator | stateSpaceDubins | stateSpaceReedsShepp |
stateSpaceSE2

Introduced in R2019b
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distance
Class: nav.StateSpace
Package: nav

Distance between two states

Syntax
dist = distance(ssObj,state1,state2)

Description
dist = distance(ssObj,state1,state2) calculates the distance between two
states.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

state1 — Initial state position
n-element vector | m-by-n matrix of row vectors

Initial state position, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in the NumStateVariables property of
ssObj.

state2 — Final state position
n-element vector | m-by-n matrix of row vectors

Final state position, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in the NumStateVariables property of
ssObj. If specified as a matrix, state1 and state2 should have the same dimensions.

2 Classes — Alphabetical List

2-466



Output Arguments
dist — Distance between two states
numeric scalar | m-element vector

Distance between two states, returned as a numeric scalar or m-element vector. This
distance calculation is the main component of evaluating costs of paths.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state space definition and sampler to use with path
planning algorithms. A simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateSpace class. For this example, create a property for the
uniform and normal distributions. You can specify any additional user-defined properties
here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
    end

Save your custom state space class and ensure your file name matches the class name.
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Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and
define its boundaries. Alternatively, you can add input arguments to the function and pass
the variables in when you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values

using predefined NormalDistribution and UniformDistribution classes.
• Specify any other user-defined property values here.

 methods
        function obj = MyCustomStateSpace
            spaceName = "MyCustomStateSpace";
            numStateVariables = 3;
            stateBounds = [-100 100;  % [min max]
                           -100 100;
                           -100 100];
            
            obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
            
            obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
            obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
            % User-defined property values here
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same name, state bounds, and distributions.

        function copyObj = copy(obj)
            copyObj = feval(class(obj));
            copyObj.StateBounds = obj.StateBounds;
            copyObj.UniformDistribution = obj.UniformDistribution.copy;
            copyObj.NormalDistribution = obj.NormalDistribution.copy;
        end
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Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the
state values get saturated at the minimum or maximum values for the state bounds.

        function boundedState = enforceStateBounds(obj, state)
            nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
            boundedState = state;
            boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
                obj.StateBounds(:,2)');
            
        end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes
to constrain the uniform distribution to a nearby state within a certain distance and
sample multiple states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the
varying input arguments.

         function state = sampleUniform(obj, varargin)
            narginchk(1,4);
            [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
            
            obj.UniformDistribution.RandomVariableLimits = stateBounds;
            state = obj.UniformDistribution.sample(numSamples);
        end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple
syntaxes for sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

        function state = sampleGaussian(obj, meanState, stdDev, varargin)    
            narginchk(3,4);
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            [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
            
            obj.NormalDistribution.Mean = meanState;
            obj.NormalDistribution.Covariance = diag(stdDev.^2);
            
            state = obj.NormalDistribution.sample(numSamples);
            state = obj.enforceStateBounds(state);
            
        end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input,
fraction, to determine how to sample along the path between two states. For this
example, define a basic linear interpolation method using the difference between states.

        function interpState = interpolate(obj, state1, state2, fraction)
            narginchk(4,4);
            [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
            
            stateDiff = state2 - state1;
            interpState = state1 + fraction' * stateDiff;
        end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the
state1 and state2 inputs to define the start and end positions. Both inputs can be a
single state (row vector) or multiple states (matrix of row vectors). For this example,
calculate the distance based on the Euclidean distance between each pair of state
positions.

        function dist = distance(obj, state1, state2)
            
            narginchk(3,3);
            
            nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
            nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

            stateDiff = bsxfun(@minus, state2, state1);
            dist = sqrt( sum( stateDiff.^2, 2 ) );
        end

Terminate the methods and class sections.
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    end
end

Save your state space class definition. You can now use the class constructor to create an
object for your state space.

See Also
nav.StateSpace | nav.StateValidator | stateSpaceDubins |
stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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enforceStateBounds
Class: nav.StateSpace
Package: nav

Limit state to state bounds

Syntax
boundedState = enforceStateBounds(ssObj,state)

Description
boundedState = enforceStateBounds(ssObj,state) returns a bounded state that
lies inside the state bounds based on the given state. Use this method to define specific
bounding behavior like wrapping angular states. The bounds are specified in the
StateBounds property of ssObj.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

state — State position
n-element vector | m-by-n matrix of row vectors

State position, specified as a n-element vector or an m-by-n matrix of row vectors. n is the
dimension of the state space specified in the NumStateVariables property of ssObj.

Output Arguments
boundedState — State position with enforced state bounds
n-element vector | m-by-n matrix of row vectors
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State position with enforced state bounds, specified as a n-element vector or m-by-n
matrix of row vectors. n is the dimension of the state space specified in the
NumStateVariables property of ssObj.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state space definition and sampler to use with path
planning algorithms. A simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateSpace class. For this example, create a property for the
uniform and normal distributions. You can specify any additional user-defined properties
here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
    end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and
define its boundaries. Alternatively, you can add input arguments to the function and pass
the variables in when you create an object.

 enforceStateBounds

2-473



• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values

using predefined NormalDistribution and UniformDistribution classes.
• Specify any other user-defined property values here.

 methods
        function obj = MyCustomStateSpace
            spaceName = "MyCustomStateSpace";
            numStateVariables = 3;
            stateBounds = [-100 100;  % [min max]
                           -100 100;
                           -100 100];
            
            obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
            
            obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
            obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
            % User-defined property values here
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same name, state bounds, and distributions.

        function copyObj = copy(obj)
            copyObj = feval(class(obj));
            copyObj.StateBounds = obj.StateBounds;
            copyObj.UniformDistribution = obj.UniformDistribution.copy;
            copyObj.NormalDistribution = obj.NormalDistribution.copy;
        end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the
state values get saturated at the minimum or maximum values for the state bounds.

        function boundedState = enforceStateBounds(obj, state)
            nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
            boundedState = state;
            boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...

2 Classes — Alphabetical List

2-474



                obj.StateBounds(:,2)');
            
        end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes
to constrain the uniform distribution to a nearby state within a certain distance and
sample multiple states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the
varying input arguments.

         function state = sampleUniform(obj, varargin)
            narginchk(1,4);
            [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
            
            obj.UniformDistribution.RandomVariableLimits = stateBounds;
            state = obj.UniformDistribution.sample(numSamples);
        end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple
syntaxes for sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

        function state = sampleGaussian(obj, meanState, stdDev, varargin)    
            narginchk(3,4);
            
            [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
            
            obj.NormalDistribution.Mean = meanState;
            obj.NormalDistribution.Covariance = diag(stdDev.^2);
            
            state = obj.NormalDistribution.sample(numSamples);
            state = obj.enforceStateBounds(state);
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        end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input,
fraction, to determine how to sample along the path between two states. For this
example, define a basic linear interpolation method using the difference between states.

        function interpState = interpolate(obj, state1, state2, fraction)
            narginchk(4,4);
            [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
            
            stateDiff = state2 - state1;
            interpState = state1 + fraction' * stateDiff;
        end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the
state1 and state2 inputs to define the start and end positions. Both inputs can be a
single state (row vector) or multiple states (matrix of row vectors). For this example,
calculate the distance based on the Euclidean distance between each pair of state
positions.

        function dist = distance(obj, state1, state2)
            
            narginchk(3,3);
            
            nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
            nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

            stateDiff = bsxfun(@minus, state2, state1);
            dist = sqrt( sum( stateDiff.^2, 2 ) );
        end

Terminate the methods and class sections.

    end
end
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Save your state space class definition. You can now use the class constructor to create an
object for your state space.

See Also
nav.StateSpace | nav.StateValidator | stateSpaceDubins |
stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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interpolate
Class: nav.StateSpace
Package: nav

Interpolate between states

Syntax
interpStates = interpolate(ssObj,state1,state2,ratios)

Description
interpStates = interpolate(ssObj,state1,state2,ratios) interpolates
between two states in your state space based on the given ratios.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

state1 — Initial state position
n-element vector

Initial state position, specified as a n-element vector. n is the dimension of the state space
specified in the NumStateVariables property of ssObj.

state2 — Final state position
n-element vector | m-by-n matrix of row vectors

Final state position, specified as a n-element vector. n is the dimension of the state space
specified in the NumStateVariables property of ssObj.
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ratios — Ratio values for interpolating along path
m-element vector

Ratio values for interpolating along path, specified as an m-element vector. These ratios
determine how to sample between the two states.

Output Arguments
interpStates — Interpolated states
m-by-n matrix of row vectors

Interpolated states, returned as an m-by-n matrix of row vectors. m is the length of
ratios and n is the dimension of the state space specified in the NumStateVariables
property of ssObj.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state space definition and sampler to use with path
planning algorithms. A simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateSpace class. For this example, create a property for the
uniform and normal distributions. You can specify any additional user-defined properties
here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
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        NormalDistribution
        % Specify additional properties here
    end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and
define its boundaries. Alternatively, you can add input arguments to the function and pass
the variables in when you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values

using predefined NormalDistribution and UniformDistribution classes.
• Specify any other user-defined property values here.

 methods
        function obj = MyCustomStateSpace
            spaceName = "MyCustomStateSpace";
            numStateVariables = 3;
            stateBounds = [-100 100;  % [min max]
                           -100 100;
                           -100 100];
            
            obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
            
            obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
            obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
            % User-defined property values here
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same name, state bounds, and distributions.

        function copyObj = copy(obj)
            copyObj = feval(class(obj));
            copyObj.StateBounds = obj.StateBounds;
            copyObj.UniformDistribution = obj.UniformDistribution.copy;
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            copyObj.NormalDistribution = obj.NormalDistribution.copy;
        end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the
state values get saturated at the minimum or maximum values for the state bounds.

        function boundedState = enforceStateBounds(obj, state)
            nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
            boundedState = state;
            boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
                obj.StateBounds(:,2)');
            
        end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes
to constrain the uniform distribution to a nearby state within a certain distance and
sample multiple states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the
varying input arguments.

         function state = sampleUniform(obj, varargin)
            narginchk(1,4);
            [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
            
            obj.UniformDistribution.RandomVariableLimits = stateBounds;
            state = obj.UniformDistribution.sample(numSamples);
        end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple
syntaxes for sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)
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        function state = sampleGaussian(obj, meanState, stdDev, varargin)    
            narginchk(3,4);
            
            [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
            
            obj.NormalDistribution.Mean = meanState;
            obj.NormalDistribution.Covariance = diag(stdDev.^2);
            
            state = obj.NormalDistribution.sample(numSamples);
            state = obj.enforceStateBounds(state);
            
        end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input,
fraction, to determine how to sample along the path between two states. For this
example, define a basic linear interpolation method using the difference between states.

        function interpState = interpolate(obj, state1, state2, fraction)
            narginchk(4,4);
            [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
            
            stateDiff = state2 - state1;
            interpState = state1 + fraction' * stateDiff;
        end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the
state1 and state2 inputs to define the start and end positions. Both inputs can be a
single state (row vector) or multiple states (matrix of row vectors). For this example,
calculate the distance based on the Euclidean distance between each pair of state
positions.

        function dist = distance(obj, state1, state2)
            
            narginchk(3,3);
            
            nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
            nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

            stateDiff = bsxfun(@minus, state2, state1);
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            dist = sqrt( sum( stateDiff.^2, 2 ) );
        end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an
object for your state space.

See Also
nav.StateSpace | nav.StateValidator | stateSpaceDubins |
stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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sampleGaussian
Class: nav.StateSpace
Package: nav

Sample state using Gaussian distribution

Syntax
states = sampleGaussian(ssObj,meanState,stdDev)
states = sampleGaussian(ssObj,meanState,stdDev,numSamples)

Description
states = sampleGaussian(ssObj,meanState,stdDev) samples a single state in
your state space from a Gaussian distribution centered on meanState with specified
standard deviation.

states = sampleGaussian(ssObj,meanState,stdDev,numSamples) samples
multiple states based on numSamples.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.

meanState — Mean state position
n-element vector

Mean state position, specified as a n-element vector, where n is the dimension of the state
space specified in the NumStateVariables property of ssObj. m is the number of
samples specified in numSamples.
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stdDev — Standard deviation around mean state
n-element vector

Standard deviation around mean state, specified as an n-element vector, where each
element corresponds to an element in meanState.

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer. By default, the function assumes
numSamples is 1.

Output Arguments
states — Sampled states from state space
n-element vector | m-by-n matrix of row vectors

Sampled states from state space, specified as a n-element vector or m-by-n matrix of row
vectors. n is the dimension of the state space specified in the NumStateVariables
property of ssObj. m is the number of samples specified in numSamples. All states are
sampled within the StateBounds property of ssObj.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state space definition and sampler to use with path
planning algorithms. A simple implementation is provided with the template.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateSpace class. For this example, create a property for the
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uniform and normal distributions. You can specify any additional user-defined properties
here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
    end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and
define its boundaries. Alternatively, you can add input arguments to the function and pass
the variables in when you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values

using predefined NormalDistribution and UniformDistribution classes.
• Specify any other user-defined property values here.

 methods
        function obj = MyCustomStateSpace
            spaceName = "MyCustomStateSpace";
            numStateVariables = 3;
            stateBounds = [-100 100;  % [min max]
                           -100 100;
                           -100 100];
            
            obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
            
            obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
            obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
            % User-defined property values here
        end

2 Classes — Alphabetical List

2-486



Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same name, state bounds, and distributions.

        function copyObj = copy(obj)
            copyObj = feval(class(obj));
            copyObj.StateBounds = obj.StateBounds;
            copyObj.UniformDistribution = obj.UniformDistribution.copy;
            copyObj.NormalDistribution = obj.NormalDistribution.copy;
        end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the
state values get saturated at the minimum or maximum values for the state bounds.

        function boundedState = enforceStateBounds(obj, state)
            nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
            boundedState = state;
            boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
                obj.StateBounds(:,2)');
            
        end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes
to constrain the uniform distribution to a nearby state within a certain distance and
sample multiple states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the
varying input arguments.

         function state = sampleUniform(obj, varargin)
            narginchk(1,4);
            [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
            
            obj.UniformDistribution.RandomVariableLimits = stateBounds;

 sampleGaussian

2-487



            state = obj.UniformDistribution.sample(numSamples);
        end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple
syntaxes for sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

        function state = sampleGaussian(obj, meanState, stdDev, varargin)    
            narginchk(3,4);
            
            [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
            
            obj.NormalDistribution.Mean = meanState;
            obj.NormalDistribution.Covariance = diag(stdDev.^2);
            
            state = obj.NormalDistribution.sample(numSamples);
            state = obj.enforceStateBounds(state);
            
        end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input,
fraction, to determine how to sample along the path between two states. For this
example, define a basic linear interpolation method using the difference between states.

        function interpState = interpolate(obj, state1, state2, fraction)
            narginchk(4,4);
            [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
            
            stateDiff = state2 - state1;
            interpState = state1 + fraction' * stateDiff;
        end

Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the
state1 and state2 inputs to define the start and end positions. Both inputs can be a
single state (row vector) or multiple states (matrix of row vectors). For this example,
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calculate the distance based on the Euclidean distance between each pair of state
positions.

        function dist = distance(obj, state1, state2)
            
            narginchk(3,3);
            
            nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
            nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

            stateDiff = bsxfun(@minus, state2, state1);
            dist = sqrt( sum( stateDiff.^2, 2 ) );
        end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an
object for your state space.

See Also
nav.StateSpace | nav.StateValidator | stateSpaceDubins |
stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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sampleUniform
Class: nav.StateSpace
Package: nav

Sample state using uniform distribution

Syntax
states = sampleUniform(ssObj)
states = sampleUniform(ssObj,numSamples)
states = sampleUniform(ssObj,nearState,distance)
states = sampleUniform(ssObj,nearState,distance,numSamples)

Description
states = sampleUniform(ssObj) samples throughout your entire state space using a
uniform distribution.

states = sampleUniform(ssObj,numSamples) samples multiple states based on
numSamples.

states = sampleUniform(ssObj,nearState,distance) samples near a given state
within a certain distance.

states = sampleUniform(ssObj,nearState,distance,numSamples) samples
multiple states near a given state based on numSamples.

Input Arguments
ssObj — State space object
object of a subclass of nav.StateSpace

State space object, specified as an object of a subclass of nav.StateSpace.
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nearState — Mean state position
n-element vector

Mean state position, specified as a n-element vector, where n is the dimension of the state
space specified in the NumStateVariables property of ssObj. m is the number of
samples specified in numSamples.

distance — Max distance from mean state position
n-element vector

Max distance from mean state position, nearState, specified as a n-element vector,
where nearState defines the center of the sampled region and distance is the
maximum distance from nearState allowed in each dimension.

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer.

Output Arguments
states — Sampled states from state space
n-element vector | m-by-n matrix of row vectors

Sampled states from state space, specified as a n-element vector or m-by-n matrix of row
vectors. n is the dimension of the state space specified in the NumStateVariables
property of ssObj. m is the number of samples specified in numSamples. All states are
sampled within the StateBounds property of ssObj.

Examples

Create Custom State Space for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state space definition and sampler to use with path
planning algorithms. A simple implementation is provided with the template.
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Call the create template function. This function generates a class definition file for you to
modify for your own implementation.

createPlanningTemplate

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateSpace class. For this example, create a property for the
uniform and normal distributions. You can specify any additional user-defined properties
here.

classdef MyCustomStateSpace < nav.StateSpace & ...
        matlabshared.planning.internal.EnforceScalarHandle
     properties
        UniformDistribution
        NormalDistribution
        % Specify additional properties here
    end

Save your custom state space class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space, the number of state variables, and
define its boundaries. Alternatively, you can add input arguments to the function and pass
the variables in when you create an object.

• For each state variable, define the [min max] values for the state bounds.
• Call the constructor of the base class.
• For this example, you specify the normal and uniform distribution property values

using predefined NormalDistribution and UniformDistribution classes.
• Specify any other user-defined property values here.

 methods
        function obj = MyCustomStateSpace
            spaceName = "MyCustomStateSpace";
            numStateVariables = 3;
            stateBounds = [-100 100;  % [min max]
                           -100 100;
                           -100 100];
            
            obj@nav.StateSpace(spaceName, numStateVariables, stateBounds);
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            obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables);
            obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables);
            % User-defined property values here
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same name, state bounds, and distributions.

        function copyObj = copy(obj)
            copyObj = feval(class(obj));
            copyObj.StateBounds = obj.StateBounds;
            copyObj.UniformDistribution = obj.UniformDistribution.copy;
            copyObj.NormalDistribution = obj.NormalDistribution.copy;
        end

Enforce State Bounds

Specify how to ensure states are always within the state bounds. For this example, the
state values get saturated at the minimum or maximum values for the state bounds.

        function boundedState = enforceStateBounds(obj, state)
            nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state");
            boundedState = state;
            boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ...
                obj.StateBounds(:,2)');
            
        end

Sample Uniformly

Specify the behavior for sampling across a uniform distribution. support multiple syntaxes
to constrain the uniform distribution to a nearby state within a certain distance and
sample multiple states.

STATE = sampleUniform(OBJ)
STATE = sampleUniform(OBJ,NUMSAMPLES)
STATE = sampleUniform(OBJ,NEARSTATE,DIST)
STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)

For this example, use a validation function to process a varargin input that handles the
varying input arguments.
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         function state = sampleUniform(obj, varargin)
            narginchk(1,4);
            [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:});
            
            obj.UniformDistribution.RandomVariableLimits = stateBounds;
            state = obj.UniformDistribution.sample(numSamples);
        end

Sample from Gaussian Distribution

Specify the behavior for sampling across a Gaussian distribution. Support multiple
syntaxes for sampling a single state or multiple states.

STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV)
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)

        function state = sampleGaussian(obj, meanState, stdDev, varargin)    
            narginchk(3,4);
            
            [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:});
            
            obj.NormalDistribution.Mean = meanState;
            obj.NormalDistribution.Covariance = diag(stdDev.^2);
            
            state = obj.NormalDistribution.sample(numSamples);
            state = obj.enforceStateBounds(state);
            
        end

Interpolate Between States

Define how to interpolate between two states in your state space. Use an input,
fraction, to determine how to sample along the path between two states. For this
example, define a basic linear interpolation method using the difference between states.

        function interpState = interpolate(obj, state1, state2, fraction)
            narginchk(4,4);
            [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction);
            
            stateDiff = state2 - state1;
            interpState = state1 + fraction' * stateDiff;
        end
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Calculate Distance Between States

Specify how to calculate the distance between two states in your state space. Use the
state1 and state2 inputs to define the start and end positions. Both inputs can be a
single state (row vector) or multiple states (matrix of row vectors). For this example,
calculate the distance based on the Euclidean distance between each pair of state
positions.

        function dist = distance(obj, state1, state2)
            
            narginchk(3,3);
            
            nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1");
            nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2");

            stateDiff = bsxfun(@minus, state2, state1);
            dist = sqrt( sum( stateDiff.^2, 2 ) );
        end

Terminate the methods and class sections.

    end
end

Save your state space class definition. You can now use the class constructor to create an
object for your state space.

See Also
nav.StateSpace | nav.StateValidator | stateSpaceDubins |
stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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nav.StateValidator class
Package: nav

Create state validator for path planning

Description
nav.StateValidator is an interface for all state validators used for path planning.
Derive from this class if you want to define your own state validator. This representation
allows for state and motion validation.

To create a sample template for generating your own state space class, call
createPlanningTemplate("StateValidator"). For our implementations of the
state validator class, see “State Validation”.

The nav.StateValidator class is a handle class.

Class Attributes
Abstract true

For information on class attributes, see “Class Attributes” (MATLAB).

Creation

Syntax
ssObj = nav.StateValidator(stateSpace)

Description
ssObj = nav.StateValidator(stateSpace) creates a state validator object that
validates states in the given state space. This constructor can only be called from a
derived class. Create your own class definition using createPlanningTemplate.
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Properties
StateSpace — State space definition
object of a subclass from nav.StateSpace

State space definition, specified as an object of a subclass from nav.StateSpace.
Specify this property using the stateSpace input on construction. You can also specify
any of our predefined objects in “State Spaces”.
Example: stateSpaceSE2

Attributes:

GetAccess public
SetAccess immutable

Methods

Public Methods
copy Copy array of handle objects
isMotionValid Check if path between states is valid
isStateValid Check if state is valid

Examples

Create Custom State Space Validator for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state validation class. State validation is used with
path planning algorithms to ensure valid paths. The template function provides a basic
implementation for example purposes.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation. Save this file.

createPlanningTemplate("StateValidator")
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Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateValidator class. You can specify any additional user-
defined properties here.

classdef MyCustomStateValidator < nav.StateValidator & ...
        matlabshared.planning.internal.EnforceScalarHandle
    properties
       % User-defined properties
    end

Save your custom state validator class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space validator and specify the state
space object. Set a default value for the state space if one is not provided. Call the
constructor of the base class. Initialize any other user-defined properties.

methods
        function obj = MyCustomStateValidator(space)
            narginchk(0,1)
            
            if nargin == 0
                space = stateSpaceSE2;
            end

            obj@nav.StateValidator(space);
            
           % Initialize user-defined properties
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same type.

        function copyObj = copy(obj)
            copyObj = feval(class(obj), obj.StateSpace);
        end
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Check State Validity

Define how a given state is validated. The state input can either be a single row vector,
or a matrix of row vectors for multiple states. Customize this function for any special
validation behavior for your state space like collision checking against obstacles.

        function isValid = isStateValid(obj, state) 
            narginchk(2,2);
            nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ...
                "isStateValid", "state");
            
            bounds = obj.StateSpace.StateBounds';
            inBounds = state >= bounds(1,:) & state <= bounds(2,:);
            isValid = all(inBounds, 2);
            
        end

Check Motion Validity

Define how to generate the motion between states and determine if it is valid. For this
example, use linspace to evenly interpolate between states and check if these states are
valid using isStateValid. Customize this function to sample between states or consider
other analytical methods for determining if a vehicle can move between given states.

        function [isValid, lastValid] = isMotionValid(obj, state1, state2)
            narginchk(3,3);
            state1 = nav.internal.validation.validateStateVector(state1, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state1");
            state2 = nav.internal.validation.validateStateVector(state2, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state2");
            
            if (~obj.isStateValid(state1))
                error("statevalidator:StartStateInvalid", "The start state of the motion is invalid.");
            end
            
            % Interpolate at a fixed interval between states and check state validity
            numInterpPoints = 100;
            interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints));
            interpValid = obj.isStateValid(interpStates);
            
            % Look for invalid states. Set lastValid state to index-1.
            firstInvalidIdx = find(~interpValid, 1);
            if isempty(firstInvalidIdx)
                isValid = true;

 nav.StateValidator class

2-499



                lastValid = state2;
            else
                isValid = false;
                lastValid = interpStates(firstInvalidIdx-1,:);
            end
            
        end

Terminate the methods and class sections.

    end
end

Save your state space validator class definition. You can now use the class constructor to
create an object for validation of states for a given state space.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
nav.StateSpace | validatorOccupancyMap | validatorVehicleCostmap

Introduced in R2019b
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isMotionValid
Class: nav.StateValidator
Package: nav

Check if path between states is valid

Syntax
[isValid,lastValid] = isMotionValid(validatorObj,state1,state2)

Description
[isValid,lastValid] = isMotionValid(validatorObj,state1,state2)
determines if the motion between two states is valid by interpolating between states. The
function also returns the last valid state along the path.

A default implementation for this method is provided when you call
createPlanningTemplate.

Input Arguments
validatorObj — State validator object
object from a subclass of nav.StateValidator

State validator object, specified as an object from a subclass of nav.StateValidator.
For provided state validator objects, see validatorOccupancyMap or
validatorVehicleCostmap.

state1 — Initial state position
n-element vector | m-by-n matrix of row vectors

Initial state position, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in the state space property in validatorObj.
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state2 — Final state position
n-element vector | m-by-n matrix of row vectors

Final state position, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in the state space property in validatorObj.

Output Arguments
isValid — Valid states
m-element vector of 1s and 0s

Valid states, specified as a m-element vector of 1s and 0s.
Data Types: logical

lastValid — Final valid state along path
n-element vector

Final valid state along path, specified as a n-element vector. n is the dimension of the
state space specified in the state space property in validatorObj.

Examples

Create Custom State Space Validator for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state validation class. State validation is used with
path planning algorithms to ensure valid paths. The template function provides a basic
implementation for example purposes.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation. Save this file.

createPlanningTemplate("StateValidator")
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Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateValidator class. You can specify any additional user-
defined properties here.

classdef MyCustomStateValidator < nav.StateValidator & ...
        matlabshared.planning.internal.EnforceScalarHandle
    properties
       % User-defined properties
    end

Save your custom state validator class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space validator and specify the state
space object. Set a default value for the state space if one is not provided. Call the
constructor of the base class. Initialize any other user-defined properties.

methods
        function obj = MyCustomStateValidator(space)
            narginchk(0,1)
            
            if nargin == 0
                space = stateSpaceSE2;
            end

            obj@nav.StateValidator(space);
            
           % Initialize user-defined properties
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same type.

        function copyObj = copy(obj)
            copyObj = feval(class(obj), obj.StateSpace);
        end
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Check State Validity

Define how a given state is validated. The state input can either be a single row vector,
or a matrix of row vectors for multiple states. Customize this function for any special
validation behavior for your state space like collision checking against obstacles.

        function isValid = isStateValid(obj, state) 
            narginchk(2,2);
            nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ...
                "isStateValid", "state");
            
            bounds = obj.StateSpace.StateBounds';
            inBounds = state >= bounds(1,:) & state <= bounds(2,:);
            isValid = all(inBounds, 2);
            
        end

Check Motion Validity

Define how to generate the motion between states and determine if it is valid. For this
example, use linspace to evenly interpolate between states and check if these states are
valid using isStateValid. Customize this function to sample between states or consider
other analytical methods for determining if a vehicle can move between given states.

        function [isValid, lastValid] = isMotionValid(obj, state1, state2)
            narginchk(3,3);
            state1 = nav.internal.validation.validateStateVector(state1, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state1");
            state2 = nav.internal.validation.validateStateVector(state2, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state2");
            
            if (~obj.isStateValid(state1))
                error("statevalidator:StartStateInvalid", "The start state of the motion is invalid.");
            end
            
            % Interpolate at a fixed interval between states and check state validity
            numInterpPoints = 100;
            interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints));
            interpValid = obj.isStateValid(interpStates);
            
            % Look for invalid states. Set lastValid state to index-1.
            firstInvalidIdx = find(~interpValid, 1);
            if isempty(firstInvalidIdx)
                isValid = true;
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                lastValid = state2;
            else
                isValid = false;
                lastValid = interpStates(firstInvalidIdx-1,:);
            end
            
        end

Terminate the methods and class sections.

    end
end

Save your state space validator class definition. You can now use the class constructor to
create an object for validation of states for a given state space.

See Also
nav.StateSpace | nav.StateValidator | validatorOccupancyMap |
validatorVehicleCostmap

Introduced in R2019b
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isStateValid
Class: nav.StateValidator
Package: nav

Check if state is valid

Syntax
isValid = isStateValid(validatorObj,states)

Description
isValid = isStateValid(validatorObj,states) determines if the states are
valid.

Input Arguments
validatorObj — State validator object
object from a subclass of nav.StateValidator

State validator object, specified as an object from a subclass of nav.StateValidator.
For provided state validator objects, see validatorOccupancyMap or
validatorVehicleCostmap.

states — State positions
n-element vector | m-by-n matrix of row vectors

Initial state position, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in validatorObj. m is the number of states to
validate.
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Output Arguments
isValid — Valid states
m-element vector of 1s and 0s

Valid states, specified as a m-element vector of 1s and 0s.

Examples

Create Custom State Space Validator for Path Planning

This example shows how to use the createPlanningTemplate function to generate a
template for customizing your own state validation class. State validation is used with
path planning algorithms to ensure valid paths. The template function provides a basic
implementation for example purposes.

Call the create template function. This function generates a class definition file for you to
modify for your own implementation. Save this file.

createPlanningTemplate("StateValidator")

Class and Property Definition

The first part of the template specifies the class definition and any properties for the
class. Derive from the nav.StateValidator class. You can specify any additional user-
defined properties here.

classdef MyCustomStateValidator < nav.StateValidator & ...
        matlabshared.planning.internal.EnforceScalarHandle
    properties
       % User-defined properties
    end

Save your custom state validator class and ensure your file name matches the class name.

Class Constructor

Use the constructor to set the name of the state space validator and specify the state
space object. Set a default value for the state space if one is not provided. Call the
constructor of the base class. Initialize any other user-defined properties.
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methods
        function obj = MyCustomStateValidator(space)
            narginchk(0,1)
            
            if nargin == 0
                space = stateSpaceSE2;
            end

            obj@nav.StateValidator(space);
            
           % Initialize user-defined properties
        end

Copy Semantics

Specify the copy method definition. Copy all the values of your user-defined variables into
a new object, so copyObj is a deep copy. The default behavior given in this example
creates a new copy of the object with the same type.

        function copyObj = copy(obj)
            copyObj = feval(class(obj), obj.StateSpace);
        end

Check State Validity

Define how a given state is validated. The state input can either be a single row vector,
or a matrix of row vectors for multiple states. Customize this function for any special
validation behavior for your state space like collision checking against obstacles.

        function isValid = isStateValid(obj, state) 
            narginchk(2,2);
            nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ...
                "isStateValid", "state");
            
            bounds = obj.StateSpace.StateBounds';
            inBounds = state >= bounds(1,:) & state <= bounds(2,:);
            isValid = all(inBounds, 2);
            
        end

Check Motion Validity

Define how to generate the motion between states and determine if it is valid. For this
example, use linspace to evenly interpolate between states and check if these states are
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valid using isStateValid. Customize this function to sample between states or consider
other analytical methods for determining if a vehicle can move between given states.

        function [isValid, lastValid] = isMotionValid(obj, state1, state2)
            narginchk(3,3);
            state1 = nav.internal.validation.validateStateVector(state1, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state1");
            state2 = nav.internal.validation.validateStateVector(state2, ...
                obj.StateSpace.NumStateVariables, "isMotionValid", "state2");
            
            if (~obj.isStateValid(state1))
                error("statevalidator:StartStateInvalid", "The start state of the motion is invalid.");
            end
            
            % Interpolate at a fixed interval between states and check state validity
            numInterpPoints = 100;
            interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints));
            interpValid = obj.isStateValid(interpStates);
            
            % Look for invalid states. Set lastValid state to index-1.
            firstInvalidIdx = find(~interpValid, 1);
            if isempty(firstInvalidIdx)
                isValid = true;
                lastValid = state2;
            else
                isValid = false;
                lastValid = interpStates(firstInvalidIdx-1,:);
            end
            
        end

Terminate the methods and class sections.

    end
end

Save your state space validator class definition. You can now use the class constructor to
create an object for validation of states for a given state space.

See Also
nav.StateSpace | nav.StateValidator | validatorOccupancyMap |
validatorVehicleCostmap
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insfilterNonholonomic
Estimate pose with nonholonomic constraints

Description
The insfilterNonholonomic object implements sensor fusion of inertial measurement
unit (IMU) and GPS data to estimate pose in the NED (or ENU) reference frame. IMU
data is derived from gyroscope and accelerometer data. The filter uses a 16-element state
vector to track the orientation quaternion, velocity, position, and IMU sensor biases. The
insfilterNonholonomic object uses an extended Kalman filter to estimate these
quantities.

Creation

Syntax
filter = insfilterNonholonomic
filter = insfilterNonholonomic('ReferenceFrame',RF)
filter = insfilterNonholonomic( ___ ,Name,Value)

Description
filter = insfilterNonholonomic creates an insfilterErrorState object with
default property values.

filter = insfilterNonholonomic('ReferenceFrame',RF) allows you to specify
the reference frame, RF, of the filter. Specify RF as 'NED' (North-East-Down) or
'ENU' (East-North-Up). The default value is 'NED'.

filter = insfilterNonholonomic( ___ ,Name,Value) also allows you set
properties of the created filter using one or more name-value pairs. Enclose each
property name in single quotes.
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Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the IMU in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude,
longitude, and altitude). Altitude is the height above the reference ellipsoid model,
WGS84. The reference location units are [degrees degrees meters].
Data Types: single | double

DecimationFactor — Decimation factor for kinematic constraint correction
2 (default) | positive integer scalar

Decimation factor for kinematic constraint correction, specified as a positive integer
scalar.
Data Types: single | double

GyroscopeNoise — Multiplicative process noise variance from gyroscope (rad/s)2

[4.8e-6 4.8e-6 4.8e-6] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar
or 3-element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to the x, y,
and z axes of the gyroscope.

Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope
bias (rad/s)2

[4e-14 4e-14 4e-14] (default) | scalar | 3-element row vector

2 Classes — Alphabetical List

2-512



Multiplicative process noise variance from the gyroscope bias in (rad/s)2, specified as a
scalar or 3-element row vector of positive real finite numbers. Gyroscope bias is modeled
as a lowpass filtered white noise process.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the
noise in the x, y, and z axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to the
x, y, and z axes of the gyroscope.

Data Types: single | double

GyroscopeBiasDecayFactor — Decay factor for gyroscope bias
0.999 (default) | scalar in the range [0,1]

Decay factor for gyroscope bias, specified as a scalar in the range [0,1]. A decay factor of
0 models gyroscope bias as a white noise process. A decay factor of 1 models the
gyroscope bias as a random walk process.
Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from
accelerometer (m/s2)2

[4.8e-2 4.8e-2 4.8e-2] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a
scalar or 3-element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the
noise in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each
axis.

Data Types: single | double

AccelerometerBiasNoise — Multiplicative process noise variance from
accelerometer bias (m/s2)2

[4e-14 4e-14 4e-14] (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as
a scalar or 3-element row vector of positive real numbers. Accelerometer bias is modeled
as a lowpass filtered white noise process.

 insfilterNonholonomic

2-513



• If AccelerometerBiasNoise is specified as a row vector, the elements correspond
to the noise in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to
each axis.

AccelerometerBiasDecayFactor — Decay factor for accelerometer bias
0.9999 (default) | scalar in the range [0,1]

Decay factor for accelerometer bias, specified as a scalar in the range [0,1]. A decay
factor of 0 models accelerometer bias as a white noise process. A decay factor of 1
models the accelerometer bias as a random walk process.
Data Types: single | double

State — State vector of extended Kalman filter
[1;zeros(15,1)] | 16-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion
parts)

N/A 1:4

Gyroscope Bias (XYZ) rad/s 5:7
Position (NED or ENU) m 8:10
Velocity (NED or ENU) m/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16

Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(16) (default) | 16-by-16 matrix

State error covariance for the extended Kalman filter, specified as a 16-by-16-element
matrix, or real numbers.
Data Types: single | double

ZeroVelocityConstraintNoise — Velocity constraints noise (m/s)2

1e-2 (default) | nonnegative scalar

Velocity constraints noise in (m/s)2, specified as a nonnegative scalar.

2 Classes — Alphabetical List

2-514



Data Types: single | double

Object Functions
correct Correct states using direct state measurements
fusegps Correct states using GPS data
pose Current orientation and position estimate
predict Update states using accelerometer and gyroscope data
reset Reset internal states
stateinfo Display state vector information

Examples

Estimate Pose of Ground Vehicle

This example shows how to estimate the pose of a ground vehicle from logged IMU and
GPS sensor measurements and ground truth orientation and position.

Load the logged data of a ground vehicle following a circular trajectory.

load('loggedGroundVehicleCircle.mat','imuFs','localOrigin','initialState','initialStateCovariance','accelData',...
      'gyroData','gpsFs','gpsLLA','Rpos','gpsVel','Rvel','trueOrient','truePos');

Initialize the insfilterNonholonomic object.

filt = insfilterNonholonomic;
filt.IMUSampleRate = imuFs;
filt.ReferenceLocation = localOrigin;
filt.State = initialState;
filt.StateCovariance = initialStateCovariance;
    
imuSamplesPerGPS = imuFs/gpsFs;

Log data for final metric computation. Use the predict object function to estimate filter
state based on accelerometer and gyroscope data. Then correct the filter state according
to GPS data.

numIMUSamples = size(accelData,1);
estOrient = quaternion.ones(numIMUSamples,1);
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estPos = zeros(numIMUSamples,3);
    
gpsIdx = 1;

for idx = 1:numIMUSamples
    predict(filt,accelData(idx,:),gyroData(idx,:));       %Predict filter state
    
    if (mod(idx,imuSamplesPerGPS) == 0)                   %Correct filter state
        fusegps(filt,gpsLLA(gpsIdx,:),Rpos,gpsVel(gpsIdx,:),Rvel);
        gpsIdx = gpsIdx + 1;
    end
    
    [estPos(idx,:),estOrient(idx,:)] = pose(filt);        %Log estimated pose
end

Calculate and display RMS errors.

posd = estPos - truePos;
quatd = rad2deg(dist(estOrient,trueOrient));
msep = sqrt(mean(posd.^2));

fprintf('Position RMS Error\n\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',msep(1),msep(2),msep(3));   

Position RMS Error
    X: 0.15, Y: 0.11, Z: 0.01 (meters)

    
fprintf('Quaternion Distance RMS Error\n\t%.2f (degrees)\n\n',sqrt(mean(quatd.^2)));

Quaternion Distance RMS Error
    0.26 (degrees)

Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterNonholonomic uses a 16-axis error state Kalman filter structure to estimate
pose in the NED reference frame. The state is defined as:
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x =

q0
q1
q2
q3

gyrobiasX
gyrobiasY
gyrobiasZ
positionN
positionE
positionD

vN
vE
vD

accelbiasX
accelbiasY
accelbiasZ

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents
a frame rotation from the platform's current orientation to the local NED coordinate
system.

• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
• positionN, positionE, positionD –– Position of the platform in the local NED coordinate

system.
• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.

Given the conventional formulation of the state transition function,

xk k− 1 = f (x k− 1 k− 1)

the predicted state estimate is:
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xk k− 1 =

q0 + Δt ∗ q1(gyrobiasX/2− gyroX/2) + Δt ∗ q2 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q3 ∗ (gyrobiasZ/2− gyroZ/2)
q1− Δt ∗ q0(gyrobiasX/2− gyroX/2) + Δt ∗ q3 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q2 ∗ (gyrobiasZ/2− gyroZ/2)
q2− Δt ∗ q3(gyrobiasX/2− gyroX/2)− Δt ∗ q0 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q1 ∗ (gyrobiasZ/2− gyroZ/2)
q3 + Δt ∗ q2(gyrobiasX/2− gyroX/2)− Δt ∗ q1 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q0 ∗ (gyrobiasZ/2− gyroZ/2)

−gryobiasX ∗ (Δt ∗ λgyro− 1)
−gryobiasY ∗ (Δt ∗ λgyro− 1)
−gryobiasZ ∗ (Δt ∗ λgyro− 1)

positionN + Δt ∗ vN
positionE + Δt ∗ vE
positionD + Δt ∗ vD

vN + Δt ∗

q0 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ − gN +
q2 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q1 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ −
q3 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ

vE + Δt ∗

q0 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ − gE−
q1 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q2 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ +
q3 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ

vD + Δt ∗

q0 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ − gD +
q1 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ −
q2 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ −
q3 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ

−accelbiasX ∗ (Δt ∗ λaccel− 1)
−accelbiasY ∗ (Δt ∗ λaccel− 1)
−accelbiasZ ∗ (Δt ∗ λaccel− 1)
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where

• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.
• accelX, accelY, accelZ –– Acceleration vector in the body frame.
• λaccel –– Accelerometer bias decay factor.
• λgyro –– Gyroscope bias decay factor.

References
[1] Munguía, R. "A GPS-Aided Inertial Navigation System in Direct Configuration."

Journal of applied research and technology. Vol. 12, Number 4, 2014, pp. 803 –
814.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilterErrorState | insfilterMARG

Introduced in R2018b
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correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and
state estimation error covariance based on the measurement and measurement
covariance. The measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

idx — State vector Index of measurement to correct
N-element vector of increasing integers in the range [1,16]

State vector index of measurement to correct, specified as an N-element vector of
increasing integers in the range [1,16].

The state values represent:

State Units Index
Orientation (quaternion
parts)

 1:4

Gyroscope bias (XYZ) rad/s 5:7
Position (NED) m 8:10
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State Units Index
Velocity (NED) m/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of
elements of the index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N
is the number of elements of the index argument, idx.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b
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fusegps
Correct states using GPS data

Syntax
fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS data to correct the state estimate.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a
real finite 3-element row vector. Latitude and longitude are in degrees with north and
east being positive. Altitude is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double
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velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-
element row vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

Velocity measurement covariance of the GPS receiver in the local NED coordinate system
in m/s2, specified as a 3-by-3 matrix.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b
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pose
Current orientation and position estimate

Syntax
[orientation, position,velocity] = pose(FUSE)
[orientation, position,velocity] = pose(FUSE,format)

Description
[orientation, position,velocity] = pose(FUSE) returns the current estimate
of the pose.

[orientation, position,velocity] = pose(FUSE,format)returns the current
estimate of the pose with orientation in the specified orientation format.

Input Arguments
FUSE — NHConstrainedIMUGPSFuser object
object

Object of NHConstrainedIMUGPSFuser, created by the insfilter function.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or
'rotmat' for a rotation matrix.
Data Types: char | string
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Output Arguments
orientation — Orientation estimate in the local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, specified as a scalar quaternion
or 3-by-3 rotation matrix. The quaternion or rotation matrix represents a frame rotation
from the local NED reference frame to the body reference frame.
Data Types: single | double | quaternion

position — Position estimate in the local NED coordinate system (m)
3-element row vector

Position estimate in the local NED coordinate system in meters, returned as a 3-element
row vector.
Data Types: single | double

velocity — Velocity estimate in local NED coordinate system (m/s)
3-element row vector

Velocity estimate in the local NED coordinate system in m/s, returned as a 3-element row
vector.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
NHConstrainedIMUGPSFuser | insfilter

Introduced in R2018b
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predict
Update states using accelerometer and gyroscope data

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope
data to update the state estimate.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate
system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system
(rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b
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reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their default
values.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b
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stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the
associated units.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b
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occupancyMap
Create occupancy map with probabilistic values

Description
occupancyMap creates a 2-D occupancy grid map object. Each cell in the occupancy grid
has a value representing the probability of the occupancy of that cell. Values close to 1
represent a high probability that the cell contains an obstacle. Values close to 0 represent
a high probability that the cell is not occupied and obstacle free.

Occupancy maps are used in navigation algorithms such as path planning (see
plannerRRT). They are also used in mapping applications for finding collision-free paths,
performing collision avoidance, and calculating localization (see
monteCarloLocalization). You can modify your occupancy map to fit your specific
application.

The occupancyMap objects support local coordinates, world coordinates, and grid
indices. The first grid location with index (1,1) begins in the top-left corner of the grid.

Use the occupancyMap class to create 2-D maps of an environment with probability
values representing different obstacles in your world. You can specify exact probability
values of cells or include observations from sensors such as laser scanners.

Probability values are stored using a binary Bayes filter to estimate the occupancy of each
grid cell. A log-odds representation is used, with values stored as int16 to reduce the
map storage size and allow for real-time applications.

Creation

Syntax
map = occupancyMap(width,height)
map = occupancyMap(width,height,resolution)
map = occupancyMap(rows,cols,resolution,'grid')
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map = occupancyMap(p)
map = occupancyMap(p,resolution)
map = occupancyMap(sourcemap)
map = occupancyMap(sourcemap,resolution)

Description
map = occupancyMap(width,height) creates a 2-D occupancy map object
representing a world space of width and height in meters. The default grid resolution is
1 cell per meter.

map = occupancyMap(width,height,resolution) creates an occupancy map with
a specified grid resolution in cells per meter. resolution sets the “Resolution” on page
2-0  property.

map = occupancyMap(rows,cols,resolution,'grid') creates an occupancy map
with the specified number of rows and columns and with the resolution in cells per meter.
The values of rows and cols sets the “GridSize” on page 2-0  property.

map = occupancyMap(p) creates an occupancy map from the values in matrix p. The
grid size matches the size of the matrix, with each cell probability value interpreted from
the matrix location.

map = occupancyMap(p,resolution) creates an occupancy map from the specified
matrix and resolution in cells per meter.

map = occupancyMap(sourcemap) creates an object using values from another
occupancyMap object.

map = occupancyMap(sourcemap,resolution) creates an object using values from
another occupancyMap object, but resamples the matrix to have the specified resolution.

Input Arguments
width — Map width
scalar

Map width, specified as a scalar in meters.

height — Map height
scalar
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Map height, specified as a scalar in meters.

resolution — Grid resolution
1 (default) | scalar

Grid resolution, specified as a scalar in cells per meter.

p — Input occupancy grid
matrix of probability values from 0 to 1

Input occupancy grid, specified as a matrix of probability values from 0 to 1. The size of
the grid matches the size of the matrix. Each matrix element corresponds to the
probability of the grid cell location being occupied. Values close to 1 represent a high
certainty that the cell contains an obstacle. Values close to 0 represent certainty that the
cell is not occupied and obstacle free.

sourcemap — Occupancy map object
occupancyMap object

Occupancy map object, specified as a occupancyMap object.

Properties
FreeThreshold — Threshold below which cells are considered obstacle-free
scalar between 0 and 1

Threshold below which cells are considered obstacle-free, specified as a scalar between
zero and 1 inclusive. Cells with probability values below this threshold are considered
obstacle free. This property also defines the free locations for path planning when using
objects like plannerRRT.

OccupiedThreshold — Threshold above which cells are considered occupied
scalar

Threshold above which cells are considered occupied, specified as a scalar. Cells with
probability values above this threshold are considered occupied.

ProbabilitySaturation — Saturation limits for probability
[0.001 0.999] (default) | two-element real-valued vector

Saturation limits for probability, specified as a 1-by-2 real-valued vector representing the
minimum and maximum values, in that order. Values above or below these saturation
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values are set to the minimum and maximum values. This property reduces
oversaturating of cells when incorporating multiple observations.

GridSize — Number of rows and columns in grid
two-element integer-valued vector

This property is read-only.

Number of rows and columns in grid, stored as a 1-by-2 real-valued vector representing
the number of rows and columns, in that order.

Resolution — Grid resolution
1 (default) | scalar

This property is read-only.

Grid resolution, stored as a scalar in cells per meter representing the number and size of
grid locations.

XLocalLimits — Minimum and maximum values of x-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of x-coordinates in local frame, stored as a two-element
horizontal vector of the form [min max]. Local frame is defined by
LocalOriginInWorld property.

YLocalLimits — Minimum and maximum values of y-coordinates in local frame
two-element vector

This property is read-only.

Minimum and maximum values of y-coordinates in local frame, stored as a two-element
horizontal vector of the form [min max]. Local frame is defined by
LocalOriginInWorld property.

XWorldLimits — Minimum and maximum world range values of x-coordinates
two-element vector

This property is read-only.
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Minimum and maximum world range values of x-coordinates, stored as a 1-by-2 vector
representing the minimum and maximum values, in that order.

YWorldLimits — Minimum and maximum world range values of y-coordinates
two-element vector

This property is read-only.

Minimum and maximum world range values of y-coordinates, stored as a 1-by-2 vector
representing the minimum and maximum values, in that order.

GridLocationInWorld — [x y] world coordinates of grid
[0 0] (default) | two-element vector

[x,y] world coordinates of the bottom-left corner of the grid, specified as a 1-by-2 vector.

LocalOriginInWorld — Location of the local frame in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the origin of the local frame in world coordinates, specified as a two-element
vector, [xLocal yLocal]. Use the move function to shift the local frame as your vehicle
moves.

GridOriginInLocal — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xLocal yLocal]

Location of the bottom-left corner of the grid in local coordinates, specified as a two-
element vector, [xLocal yLocal].

DefaultValue — Default value for unspecified map locations
0.5 (default) | scalar between 0 and 1

Default value for unspecified map locations including areas outside the map, specified as
a scalar between 0 and 1 inclusive.

Object Functions
checkOccupancy Check locations for free, occupied, or unknown values
copy Create copy of occupancy grid
getOccupancy Get occupancy value of locations
grid2local Convert grid indices to local coordinates
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grid2world Convert grid indices to world coordinates
inflate Inflate each occupied grid location
insertRay Insert ray from laser scan observation
local2grid Convert local coordinates to grid indices
local2world Convert local coordinates to world coordinates
move Move map in world frame
occupancyMatrix Convert occupancy grid to double matrix
raycast Compute cell indices along a ray
rayIntersection Find intersection points of rays and occupied map cells
setOccupancy Set occupancy value of locations
show Show grid values in a figure
syncWith Sync map with overlapping map
updateOccupancy Integrate probability observations at locations
world2grid Convert world coordinates to grid indices
world2local Convert world coordinates to local coordinates

Examples

Insert Laser Scans into Occupancy Map

Create an empty occupancy grid map.

map = occupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.
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show(map)

Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = 0.7000

Add a second reading and view the update to the occupancy values. The additional
reading increases the confidence in the readings. The free and occupied values become
more distinct.

insertRay(map,pose,scan,maxrange);
show(map)
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getOccupancy(map,[8 5])

ans = 0.8448

Convert PGM Image to Map

Convert a portable graymap (PGM) file containing a ROS map into an occupancyMap for
use in MATLAB.

Import the image using imread. Crop the image to the playpen area.

 occupancyMap

2-537



image = imread('playpen_map.pgm');
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)
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PGM values are expressed from 0 to 255 as uint8. Normalize these values by converting
the cropped image to double and dividing each cell by 255. This image shows obstacles
as values close to 0. Subtract the normalized image from 1 to get occupancy values with 1
representing occupied space.

imageNorm = double(imageCropped)/255;
imageOccupancy = 1 - imageNorm;

Create the occupancyMap object using an adjusted map image. The imported map
resolution is 20 cells per meter.

map = occupancyMap(imageOccupancy,20);
show(map)
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Limitations
Occupancy values have a limited resolution of ±0.001. The values are stored as int16
using a log-odds representation. This data type limits resolution, but saves memory when
storing large maps in MATLAB. When calling setOccupancy and then getOccupancy,
the value returned might not equal the value you set. For more information, see the log-
odds representations section in “Occupancy Grids”.

If memory size is a limitation, consider using binaryOccupancyMap instead. The binary
occupancy map uses less memory with binary values, but still works with Navigation
Toolbox™ algorithms and other applications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | controllerPurePursuit | mobileRobotPRM |
readOccupancyGrid | writeOccupancyGrid

Topics
“Create Egocentric Occupancy Maps Using Range Sensors”
“Build Occupancy Map from Lidar Scans and Poses”
“Occupancy Grids”

Introduced in R2019b
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checkOccupancy
Check locations for free, occupied, or unknown values

Syntax
iOccval = checkOccupancy(map,xy)
occVal = checkOccupancy(map,xy,"local")
iOccval = checkOccupancy(map,ij,"grid")
[iOccval,validPts] = checkOccupancy( ___ )

occMatrix = checkOccupancy(map)
occMatrix = checkOccupancy(map,bottomLeft,matSize)
occMatrix = checkOccupancy(map,bottomLeft,matSize,"local")
occMatrix = checkOccupancy(map,topLeft,matSize,"grid")

Description
iOccval = checkOccupancy(map,xy) returns an array of occupancy values at the xy
locations. Each row is a separate xy location in the grid. Occupancy values can be
obstacle free (0), occupied (1), or unknown (–1) based on the OccupiedThreshold and
FreeThreshold properties of the map object.

occVal = checkOccupancy(map,xy,"local") returns an array of occupancy values
at the xy locations in the local frame. The local frame is based on the
LocalOriginInWorld property of the map.

iOccval = checkOccupancy(map,ij,"grid") specifies ij grid cell indices instead
of xy locations.

[iOccval,validPts] = checkOccupancy( ___ ) also outputs an n-element vector of
logical values indicating whether input coordinates are within the map limits.

occMatrix = checkOccupancy(map) returns a matrix that contains the occupancy
status of each location. Obstacle-free cells return 0, occupied cells return 1. Unknown
locations, including outside the map, return -1.
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occMatrix = checkOccupancy(map,bottomLeft,matSize) returns a matrix of
occupancy values by specifying the bottom-left corner location in world coordinates and
the matrix size in meters.

occMatrix = checkOccupancy(map,bottomLeft,matSize,"local") returns a
matrix of occupancy values by specifying the bottom-left corner location in local
coordinates and the matrix size in meters.

occMatrix = checkOccupancy(map,topLeft,matSize,"grid") returns a matrix
of occupancy values by specifying the top-left corner location in grid coordinates and the
grid size.

Examples

Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and
free thresholds of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = 0.5*ones(20,20);
p(11:20,11:20) = 0.75*ones(10,10);
map = occupancyMap(p,10);

Get the occupancy of different locations and check their occupancy statuses. The
occupancy status returns 0 for free space and 1 for occupied space. Unknown values
return –1.

pocc = getOccupancy(map,[1.5 1])

pocc = 0.7500

occupied = checkOccupancy(map,[1.5 1])

occupied = 1

pocc2 = getOccupancy(map,[5 5],'grid')

pocc2 = 0.5000
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occupied2 = checkOccupancy(map,[5 5],'grid')

occupied2 = -1

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high certainty that
the cell contains an obstacle. Values close to 0 represent certainty that the cell is not
occupied and obstacle free.

xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format,
where n is the number of grid positions.
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as
a two-element vector, [xCoord yCoord]. Location is in world or local coordinates based
on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]
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Output matrix size, specified as a two-element vector, [xLength yLength], or
[gridRow gridCol]. Size is in world, local, or grid coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
iOccval — Interpreted occupancy values
n-by-1 column vector

Interpreted occupancy values, returned as an n-by-1 column vector equal in length to xy
or ij.

Occupancy values can be obstacle free (0), occupied (1), or unknown (–1). These values
are determined from the actual probability values and the OccupiedThreshold and
FreeThreshold properties of the map object.

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij.
Locations inside the map return a value of 1. Locations outside the map limits return a
value of 0.

occMatrix — Matrix of occupancy values
matrix

Matrix of occupancy values, returned as matrix with size equal to matSize or the size of
your map. Occupancy values can be obstacle free (0), occupied (1), or unknown (-1).

See Also
binaryOccupancyMap | getOccupancy | occupancyMap
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Introduced in R2019b
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copy
Create copy of occupancy grid

Syntax
copyMap = copy(map)

Description
copyMap = copy(map) creates a deep copy of the occupancyMap object with the same
properties.

Examples

Copy Occupancy Grid Map

Copy an occupancy grid map object. Once copied, the original object can be modified
without affecting the copied map.

Create an occupancy grid with zeros for an empty map.

p = zeros(10);
map = occupancyMap(p);

Copy the occupancy grid map. Modify the original map. The copied map is not modified.
Plot the two maps side by side.

mapCopy = copy(map);
setOccupancy(map,[1:3;1:3]',ones(3,1));
subplot(1,2,1)
show(map)
title('Original map')
subplot(1,2,2)
show(mapCopy)
title('Copied map')
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.
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Output Arguments
copyMap — Copied map representation
occupancyMap object

Map representation, specified as a occupancyMap object. The properties are the same as
the input object, map, but the copy has a different object handle.

See Also
binaryOccupancyMap | getOccupancy | occupancyMap | occupancyMatrix

Topics
“Occupancy Grids”

Introduced in R2019b
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getOccupancy
Get occupancy value of locations

Syntax
occVal = getOccupancy(map,xy)
occVal = getOccupancy(map,xy,"local")
occVal = getOccupancy(map,ij,"grid")
[occVal,validPts] = getOccupancy( ___ )

[occVal,validPts] = getOccupancy( ___ )

occMatrix = getOccupancy(map)
occMatrix = getOccupancy(map,bottomLeft,matSize)
occMatrix = getOccupancy(map,bottomLeft,matSize,"local")
occMatrix = getOccupancy(map,topLeft,matSize,"grid")

Description
occVal = getOccupancy(map,xy) returns an array of probability occupancy values at
the xy locations in the world frame. Values close to 1 represent a high probability that the
cell contains an obstacle. Values close to 0 represent a high probability that the cell is not
occupied and obstacle free. Unknown locations, including outside the map, return
map.DefaultValue.

occVal = getOccupancy(map,xy,"local") returns an array of occupancy values at
the xy locations in the local frame.

occVal = getOccupancy(map,ij,"grid") specifies ij grid cell indices instead of xy
locations.

[occVal,validPts] = getOccupancy( ___ ) additionally outputs an n-element
vector of logical values indicating whether input coordinates are within the map limits.

[occVal,validPts] = getOccupancy( ___ ) additionally outputs an n-element
vector of logical values indicating whether input coordinates are within the map limits.
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occMatrix = getOccupancy(map) returns all occupancy values in the map as a
matrix.

occMatrix = getOccupancy(map,bottomLeft,matSize) returns a matrix of
occupancy values by specifying the bottom-left corner location in world coordinates and
the matrix size in meters.

occMatrix = getOccupancy(map,bottomLeft,matSize,"local") returns a
matrix of occupancy values by specifying the bottom-left corner location in local
coordinates and the matrix size in meters.

occMatrix = getOccupancy(map,topLeft,matSize,"grid") returns a matrix of
occupancy values by specifying the top-left corner location in grid indices and the matrix
size.

Examples

Insert Laser Scans into Occupancy Map

Create an empty occupancy grid map.

map = occupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)
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Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = 0.7000

Add a second reading and view the update to the occupancy values. The additional
reading increases the confidence in the readings. The free and occupied values become
more distinct.

insertRay(map,pose,scan,maxrange);
show(map)
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getOccupancy(map,[8 5])

ans = 0.8448

Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and
free thresholds of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.
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p = 0.5*ones(20,20);
p(11:20,11:20) = 0.75*ones(10,10);
map = occupancyMap(p,10);

Get the occupancy of different locations and check their occupancy statuses. The
occupancy status returns 0 for free space and 1 for occupied space. Unknown values
return –1.

pocc = getOccupancy(map,[1.5 1])

pocc = 0.7500

occupied = checkOccupancy(map,[1.5 1])

occupied = 1

pocc2 = getOccupancy(map,[5 5],'grid')

pocc2 = 0.5000

occupied2 = checkOccupancy(map,[5 5],'grid')

occupied2 = -1

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
world coordinates.
Data Types: double
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ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format,
where n is the number of grid positions.
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as
a two-element vector, [xCoord yCoord]. Location is in world or local coordinates based
on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength] or
[gridRow gridCol]. Size is in world, local, or grid coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
occVal — Probability occupancy values
column vector

Probability occupancy values, returned as a column vector the same length as either xy
or ij.

Values close to 0 represent a high probability that the cell is not occupied and obstacle
free.
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validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij.
Locations inside the map return a value of 1. Locations outside the map limits return a
value of 0.

occMatrix — Matrix of occupancy values
matrix

Matrix of occupancy values, returned as matrix with size equal to matSize or the size of
map.

Values close to 0 represent a high probability that the cell is not occupied and obstacle
free.

Limitations
Occupancy values have a limited resolution of ±0.001. The values are stored as int16
using a log-odds representation. This data type limits resolution, but saves memory when
storing large maps in MATLAB. When calling setOccupancy and then getOccupancy,
the value returned might not equal the value you set. For more information, see the log-
odds representations section in “Occupancy Grids”.

See Also
checkOccupancy | occupancyMap

Topics
“Occupancy Grids” (Robotics System Toolbox)

Introduced in R2019b
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grid2local
Convert grid indices to local coordinates

Syntax
xy = grid2local(map,ij)

Description
xy = grid2local(map,ij) converts a [row col] array of grid indices, ij, to an
array of local coordinates, xy.

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high certainty that
the cell contains an obstacle. Values close to 0 represent certainty that the cell is not
occupied and obstacle free.

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

Output Arguments
xy — Local coordinates
n-by-2 vertical array
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Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of local coordinates.

See Also
grid2world | occupancyMap

Introduced in R2019b
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grid2world
Convert grid indices to world coordinates

Syntax
xy = grid2world(map,ij)

Description
xy = grid2world(map,ij) converts a [row col] array of grid indices, ij, to an
array of world coordinates, xy.

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format,
where n is the number of grid positions. The grid cell locations are counted from the top
left corner of the grid.
Data Types: double
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Output Arguments
xy — World coordinates
n-by-2 matrix

World coordinates, returned as an n-by-2 matrix of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

See Also
binaryOccupancyMap | grid2local | occupancyMap | world2grid

Topics
“Occupancy Grids”

Introduced in R2019b
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inflate
Inflate each occupied grid location

Syntax
inflate(map,radius)
inflate(map,gridradius,'grid')

Description
inflate(map,radius) inflates each occupied position of the specified map by the
radius, specified in meters. Occupied location values are based on the
map.OccupiedThreshold property. radius is rounded up to the nearest equivalent cell
based on the resolution of the map. Values are modified using grayscale inflation to inflate
higher probability values across the grid. This inflation increases the size of the occupied
locations in the map.

inflate(map,gridradius,'grid') inflates each occupied position by the
gridradius, specified in number of cells.

Examples

Create and Modify Occupancy Map

Create a 10 m-by-10 m empty map.

map = occupancyMap(10,10,10);

Update the occupancy of world locations with specific probability values and display the
map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];
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pvalues = [0.2 0.4 0.6 0.8 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)

Inflate occupied areas by a radius of 0.5 m. Larger occupancy values overwrite the
smaller values.

inflate(map,0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map,[x y]);

Set grid locations to occupied locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.
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radius — Dimension that defines by how much to inflate occupied locations
scalar

Dimension that defines by how much to inflate occupied locations, specified as a scalar in
meters. radius is rounded up to the nearest equivalent cell value.
Data Types: double

gridradius — Number of cells by which to inflate the occupied locations
positive integer scalar

Number of cells by which to inflate the occupied locations, specified as a positive integer
scalar.
Data Types: double

More About

Grayscale Inflation
In grayscale inflation, the strel function creates a circular structuring element using the
inflation radius. The grayscale inflation of A(x, y) by B(x, y) is defined as:

(A⊕B)(x, y) = max {A(x – x′, y’ – y′) +B(x', y') | (x′, y′) ∊ DB}.

DB is the domain of the probability values in the structuring element B. A(x,y) is assumed
to be +∞ outside the domain of the grid.

Grayscale inflation acts as a local maximum operator and finds the highest probability
values for nearby cells. The inflate method uses this definition to inflate the higher
probability values throughout the grid. This inflation increases the size of any occupied
locations and creates a buffer zone for vehicles to use as they navigate.

See Also
binaryOccupancyMap | getOccupancy | occupancyMap

Topics
“Occupancy Grids”
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insertRay
Insert ray from laser scan observation

Syntax
insertRay(map,pose,scan,maxrange)
insertRay(map,pose,ranges,angles,maxrange)
insertRay(map,startpt,endpoints)
insertRay( ___ ,invModel)

Description
insertRay(map,pose,scan,maxrange) inserts one or more lidar scan sensor
observations in the occupancy grid, map, using the input lidarScan object, scan, to get
ray endpoints. The ray endpoints are considered free space if the input scan ranges are
below maxrange. Cells observed as occupied are updated with an observation of 0.7. All
other points along the ray are treated as obstacle free and updated with an observation of
0.4. Endpoints above maxrange are not updated. NaN values are ignored. This behavior
correlates to the inverse sensor model.

insertRay(map,pose,ranges,angles,maxrange) specifies the range readings as
vectors defined by the input ranges and angles.

insertRay(map,startpt,endpoints) inserts observations between the line segments
from the start point to the end points. The endpoints are updated with a probability
observation of 0.7. Cells along the line segments are updated with an observation of 0.4.

insertRay( ___ ,invModel) inserts rays with updated probabilities given in the two-
element vector, invModel, that corresponds to obstacle-free and occupied observations.
Use any of the previous syntaxes to input the rays.

Examples
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Insert Laser Scans into Occupancy Map

Create an empty occupancy grid map.

map = occupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)
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Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = 0.7000

Add a second reading and view the update to the occupancy values. The additional
reading increases the confidence in the readings. The free and occupied values become
more distinct.

insertRay(map,pose,scan,maxrange);
show(map)
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getOccupancy(map,[8 5])

ans = 0.8448

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
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probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

pose — Position and orientation of vehicle
three-element vector

Position and orientation of vehicle, specified as an [x y theta] vector. The vehicle pose
is an x and y position with angular orientation theta (in radians) measured from the x-
axis.

scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector of elements measured in meters. These
range values are distances from a sensor at given angles. The vector must be the same
length as the corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector of elements measured in radians. These
angle values correspond to the given ranges. The vector must be the same length as the
corresponding ranges vector.

maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values
greater than or equal to maxrange are considered free along the whole length of the ray,
up to maxrange.

startpt — Start point for rays
two-element vector

Start point for rays, specified as a two-element vector, [x y], in the world coordinate
frame. All rays are line segments that originate at this point.
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endpoints — Endpoints for rays
n-by-2 matrix

Endpoints for rays, specified as an n-by-2 matrix of [x y] pairs in the world coordinate
frame, where n is the length of ranges or angles. All rays are line segments that
originate at startpt.

invModel — Inverse sensor model values
two-element vector

Inverse sensor model values, specified as a two-element vector corresponding to obstacle-
free and occupied probabilities. Points along the ray are updated according to the inverse
sensor model and the specified range readings. NaN range values are ignored. Range
values greater than maxrange are not updated. See “Inverse Sensor Model” on page 2-
572.

More About

Inverse Sensor Model
The inverse sensor model determines how values are set along a ray from a range sensor
reading to the obstacles in the map. You can customize this model by specifying different
probabilities for free and occupied locations in the invModel argument. NaN range
values are ignored. Range values greater than maxrange are not updated.
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Grid locations that contain range readings are updated with the occupied probability.
Locations before the reading are updated with the free probability. All locations after the
reading are not updated.

See Also
binaryOccupancyMap | lidarScan | occupancyMap | raycast

Topics
“Occupancy Grids”

 insertRay
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local2grid
Convert local coordinates to grid indices

Syntax
ij = local2grid(map,xy)

Description
ij = local2grid(map,xy) converts an array of local coordinates, xy, to an array of
grid indices, ij in [row col] format.

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
local coordinates.

Output Arguments
ij — Grid positions
n-by-2 matrix

 local2grid
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Grid positions, returned as an n-by-2 matrix of [i j] pairs in [row col] format, where
n is the number of grid positions. The grid cell locations start at (1,1) and are counted
from the top left corner of the grid.

See Also
binaryOccupancyMap | grid2world | occupancyMap

Topics
“Occupancy Grids”

Introduced in R2019b
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local2world
Convert local coordinates to world coordinates

Syntax
xyWorld = local2world(map,xy)

Description
xyWorld = local2world(map,xy) converts an array of local coordinates to world
coordinates

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

 local2world
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Output Arguments
xyWorld — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

See Also
grid2world | occupancyMap | world2local

Topics
“Occupancy Grids”

Introduced in R2019b
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move
Move map in world frame

Syntax
move(map,moveValue)
move(map,moveValue,Name,Value)

Description
move(map,moveValue) moves the local origin of the map to an absolute location,
moveValue, in the world frame, and updates the map limits. Move values are truncated
based on the resolution of the map. By default, newly revealed regions are set to
map.DefaultValue.

move(map,moveValue,Name,Value) specifies additional options specified by one or
more name-value pair arguments.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world
map. This process emulates a vehicle driving in an environment and getting updates on
obstacles in the new areas.

Load example maps. Create an occupancy map from the ternaryMap.

load exampleMaps.mat
map = occupancyMap(ternaryMap);
show(map)

 move
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Create a smaller local map.

mapLocal = occupancyMap(ternaryMap(end-200:end,1:200));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local
frame.

Specify path locations and plot on the map.

path = [100 100
        100 250
        200 250
        300 250];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off

 move
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Create a loop for moving between points by the map resolution. Divide the difference
between points by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
    end
end
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

 move
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moveValue — Local map origin move value
[x y] vector

Local map origin move value, specified as an [x y] vector. By default, the value is an
absolute location to move the local origin to in the world frame. Use the MoveType name-
value pair to specify a relative move.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MoveType','relative'

MoveType — Type of move
'absolute' (default) | 'relative'

Type of move, specified as 'absolute' or 'relative'. For relative moves, specify a
relative [x y] vector for moveValue based on your current local frame.

FillValue — Fill value for revealed locations
0 (default) | 1

Fill value for revealed locations because of the shifted map limits, specified as 0 or 1.

SyncWith — Secondary map to sync with
occupancyMap object

Secondary map to sync with, specified as a occupancyMap object. Any revealed locations
based on the move are updated with values in this map using the world coordinates.

See Also
binaryOccupancyMap | occupancyMap | occupancyMatrix

Introduced in R2019b

2 Classes — Alphabetical List

2-584



occupancyMatrix
Convert occupancy grid to double matrix

Syntax
mat = occupancyMatrix(map)
mat = occupancyMatrix(map,'ternary')

Description
mat = occupancyMatrix(map) returns probability values stored in the occupancy grid
object as a matrix.

mat = occupancyMatrix(map,'ternary') returns the occupancy status of each grid
cell as a matrix. The OccupiedThreshold and FreeThreshold properties on the
occupancy grid determine the obstacle free cells (0) and occupied cells (1). Unknown
values are returned as –1.

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

Output Arguments
mat — Occupancy grid values
matrix

 occupancyMatrix
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Occupancy grid values, returned as an h-by-w matrix, where h and w are defined by the
two elements of the GridSize property of the occupancy grid object.
Data Types: double

See Also
binaryOccupancyMap | getOccupancy | occupancyMap | show

Topics
“Occupancy Grids”

Introduced in R2019b
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raycast
Compute cell indices along a ray

Syntax
[endpoints,midpoints] = raycast(map,pose,range,angle)
[endpoints,midpoints] = raycast(map,p1,p2)

Description
[endpoints,midpoints] = raycast(map,pose,range,angle) returns cell indices
of the specified map for all cells traversed by a ray originating from the specified pose at
the specified angle and range values. endpoints contains all indices touched by the
end of the ray, with all other points included in midpoints.

[endpoints,midpoints] = raycast(map,p1,p2) returns the cell indices of the line
segment between the two specified points.

Examples

Get Grid Cells Along A Ray

Use the raycast method to generate cell indices for all cells traversed by a ray.

Create an empty map. A low-resolution map is used to illustrate the effected grid
locations.

map = occupancyMap(10,10,1);
show(map)

 raycast
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Get the grid indices of the midpoints and end points of a ray from [2 3] to [8.5 8]. Set
occupancy values for these grid indices. Midpoints are treated as open space. Update
endpoints with an occupied observation.

p1 = [2 3];
p2 = [8.5 8];
[endPts,midPts] = raycast(map,p1,p2);
setOccupancy(map,midPts,zeros(length(midPts),1),'grid');
setOccupancy(map,endPts,ones(length(endPts),1),'grid');

Plot the original ray over the map. Each grid cell touched by the line is updated. The
starting point overlaps multiple cells, and the line touches the edge of certain cells, but
all the cells are still updated.
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show(map)
hold on
plot([p1(1) p2(1)],[p1(2) p2(2)],'-b','LineWidth',2)
plot(p2(1),p2(2),'or')
grid on

Input Arguments
map — Map representation
occupancyMap object

 raycast
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Map representation, specified as a occupancyMap object. This object represents the
environment of the sensor. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

pose — Position and orientation of sensor
three-element vector

Position and orientation of sensor, specified as an [x y theta] vector. The sensor pose
is an x and y position with angular orientation theta (in radians) measured from the x-
axis.

range — Range of ray
scalar

Range of ray, specified as a scalar in meters.

angle — Angle of ray
scalar

Angle of ray, specified as a scalar in radians. The angle value is for the corresponding
range.

p1 — Starting point of ray
two-element vector

Starting point of ray, specified as an [x y] two-element vector. The point is defined in the
world frame.

p2 — Endpoint of ray
two-element vector

Endpoint of ray, specified as an [x y] two-element vector. The point is defined in the
world frame.

Output Arguments
endpoints — Endpoint grid indices
n-by-2 matrix
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Endpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of
grid indices. The endpoints are where the range value hits at the specified angle.
Multiple indices are only given if the point intersect grid locations.

midpoints — Midpoint grid indices
n-by-2 matrix

Midpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of
grid indices. This argument includes all grid indices the ray intersects, excluding the
endpoint.

See Also
occupancyMap

Topics
“Occupancy Grids”

Introduced in R2019b
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rayIntersection
Find intersection points of rays and occupied map cells

Syntax
intersectionPts = rayIntersection(map,pose,angles,maxrange)
intersectionPts = rayIntersection(map,pose,angles,maxrange,
threshold)

Description
intersectionPts = rayIntersection(map,pose,angles,maxrange) returns
intersection points of rays and occupied cells in the specified map. Rays emanate from the
specified pose and angles. Intersection points are returned in the world coordinate
frame. If there is no intersection up to the specified maxrange, [NaN NaN] is returned.
By default, the OccupiedThreshold property is used to determine occupied cells.

intersectionPts = rayIntersection(map,pose,angles,maxrange,
threshold) returns intersection points based on the specified threshold for the
occupancy values. Values greater than or equal to the threshold are considered occupied.

Examples

Get Ray Intersection Points on Occupancy Map

Create an occupancy grid map. Add obstacles and inflate them. A lower resolution map is
used to illustrate the importance of using grid cells. Show the map.

map = occupancyMap(10,10,2);
obstacles = [4 10; 3 5; 7 7];
setOccupancy(map,obstacles,ones(length(obstacles),1))
inflate(map,0.25)
show(map)
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Find the intersection points of occupied cells and rays that emit from the given vehicle
pose. Specify the max range and angles for these rays. The last ray does not intersect
with an obstacle within the max range, so it has no collision point.

maxrange = 6;
angles = [pi/4,-pi/4,0,-pi/8];
vehiclePose = [4,4,pi/2];
intsectionPts = rayIntersection(map,vehiclePose,angles,maxrange,0.7)

intsectionPts = 4×2

    3.5000    4.5000
    6.0000    6.0000
    4.0000    9.0000

 rayIntersection
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       NaN       NaN

Plot the intersection points and rays from the pose.

hold on
plot(intsectionPts(:,1),intsectionPts(:,2),'*r') % Intersection points
plot(vehiclePose(1),vehiclePose(2),'ob') % Vehicle pose
for i = 1:3
    plot([vehiclePose(1),intsectionPts(i,1)],...
        [vehiclePose(2),intsectionPts(i,2)],'-b') % Plot intersecting rays
end
plot([vehiclePose(1),vehiclePose(1)-6*sin(angles(4))],...
    [vehiclePose(2),vehiclePose(2)+6*cos(angles(4))],'-b') % No intersection ray

legend('Collision Points','Vehicle Position','Rays','Location','SouthEast')
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the sensor. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

 rayIntersection
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pose — Position and orientation of sensor
three-element vector

Position and orientation of sensor, specified as an [x y theta] vector. The sensor pose
is an x and y position with angular orientation theta (in radians) measured from the x-
axis.

angles — Ray angles emanating from sensor
vector

Ray angles emanating from the sensor, specified as a vector with elements in radians.
These angles are relative to the specified sensor pose.

maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values
greater than or equal to maxrange are considered free along the whole length of the ray,
up to maxrange.

threshold — Threshold for occupied cells
scalar from 0 to 1

Threshold for occupied cells, specified as a scalar from 0 to 1. Occupancy values greater
than or equal to the threshold are treated as occupied cells to trigger intersections.

Output Arguments
intersectionPts — Intersection points
n-by-2 matrix

Intersection points, returned as n-by-2 matrix of [x y] pairs in the world frame, where n
is the length of angles.

See Also
binaryOccupancyMap | occupancyMap | raycast | updateOccupancy

Topics
“Occupancy Grids”
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setOccupancy
Set occupancy value of locations

Syntax
setOccupancy(map,xy,occval)

setOccupancy(map,xy,occval,"local")
setOccupancy(map,ij,occval,"grid")
validPts = setOccupancy( ___ )

setOccupancy(map,bottomLeft,inputMatrix)
setOccupancy(map,bottomLeft,inputMatrix,"local")
setOccupancy(map,topLeft,inputMatrix,"grid")

Description
setOccupancy(map,xy,occval) assigns the occupancy values to each coordinate
specified in xy. occval can be a column vector the same size of xy or a scalar, which is
applied to all coordinates.

setOccupancy(map,xy,occval,"local") assigns occupancy values, occval, to the
input array of local coordinates, xy, as local coordinates.

setOccupancy(map,ij,occval,"grid") assigns occupancy values, occval, to the
input array of grid indices, ij, as [rows cols].

validPts = setOccupancy( ___ ) outputs an n-element vector of logical values
indicating whether input coordinates are within the map limits.

setOccupancy(map,bottomLeft,inputMatrix) assigns a matrix of occupancy values
by specifying the bottom-left corner location in world coordinates.

setOccupancy(map,bottomLeft,inputMatrix,"local") assigns a matrix of
occupancy values by specifying the bottom-left corner location in local coordinates.
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setOccupancy(map,topLeft,inputMatrix,"grid") assigns a matrix of occupancy
values by specifying the top-left cell index in grid indices and the matrix size.

Examples

Create and Modify Occupancy Map

Create a 10 m-by-10 m empty map.

map = occupancyMap(10,10,10);

Update the occupancy of world locations with specific probability values and display the
map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2 0.4 0.6 0.8 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)

 setOccupancy
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Inflate occupied areas by a radius of 0.5 m. Larger occupancy values overwrite the
smaller values.

inflate(map,0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map,[x y]);

Set grid locations to occupied locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)

 setOccupancy
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.
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xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format,
where n is the number of grid positions.
Data Types: double

occval — Probability occupancy values
scalar | column vector

Probability occupancy values, specified as a scalar or a column vector the same size as
either xy or ij. A scalar input is applied to all coordinates in either xy or ij.

Values close to 0 represent a high probability that the cell is not occupied and obstacle
free.

inputMatrix — Occupancy values
matrix

Occupancy values, specified as a matrix. Values are given between 0 and 1 inclusively.

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as
a two-element vector, [xCoord yCoord]. Location is in world or local coordinates based
on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].

 setOccupancy
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Data Types: double

Output Arguments
validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij.
Locations inside the map return a value of 1. Locations outside the map limits return a
value of 0.

Limitations
Occupancy values have a limited resolution of ±0.001. The values are stored as int16
using a log-odds representation. This data type limits resolution, but saves memory when
storing large maps in MATLAB. When calling setOccupancy and then getOccupancy,
the value returned might not equal the value you set. For more information, see the log-
odds representations section in “Occupancy Grids”.

See Also
binaryOccupancyMap | getOccupancy | occupancyMap

Topics
“Occupancy Grids”

Introduced in R2019b
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show
Show grid values in a figure

Syntax
show(map)
show(map, "local")
show(map, "grid")
show( ___ ,Name,Value)
mapImage = show( ___ )

Description
show(map) displays the occupancy grid map in the current axes, with the axes labels
representing the world coordinates.

show(map, "local") displays the occupancy grid map in the current axes, with the
axes labels representing the local coordinates instead of world coordinates.

show(map, "grid") displays the occupancy grid map in the current axes, with the axes
labels representing the grid coordinates.

show( ___ ,Name,Value) specifies additional options specified by one or more name-
value pair arguments.

mapImage = show( ___ ) returns the handle to the image object created by show.

Examples

Create and Modify Occupancy Map

Create a 10 m-by-10 m empty map.

map = occupancyMap(10,10,10);

 show
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Update the occupancy of world locations with specific probability values and display the
map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2 0.4 0.6 0.8 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)

Inflate occupied areas by a radius of 0.5 m. Larger occupancy values overwrite the
smaller values.
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inflate(map,0.5)
figure
show(map)

Get grid locations from world locations.

ij = world2grid(map,[x y]);

Set grid locations to occupied locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)

 show
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Convert PGM Image to Map

Convert a portable graymap (PGM) file containing a ROS map into an occupancyMap for
use in MATLAB.

Import the image using imread. Crop the image to the playpen area.

image = imread('playpen_map.pgm');
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)
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PGM values are expressed from 0 to 255 as uint8. Normalize these values by converting
the cropped image to double and dividing each cell by 255. This image shows obstacles
as values close to 0. Subtract the normalized image from 1 to get occupancy values with 1
representing occupied space.

 show
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imageNorm = double(imageCropped)/255;
imageOccupancy = 1 - imageNorm;

Create the occupancyMap object using an adjusted map image. The imported map
resolution is 20 cells per meter.

map = occupancyMap(imageOccupancy,20);
show(map)
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Parent',axHandle

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as either an Axes or UIAxesobject. See axes or uiaxes.

FastUpdate — Update existing map plot
0 (default) | 1

Update existing map plot, specified as 0 or 1. If you previously plotted your map on your
figure, set to 1 for a faster update to the figure. This is useful for updating the figure in a
loop for fast animations.

Outputs
mapImage — Map image
object handle

Map image, specified as an object handle.
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See Also
axes | binaryOccupancyMap | occupancyMap | occupancyMatrix

Introduced in R2019b

 show

2-613



syncWith
Sync map with overlapping map

Syntax
mat = syncWith(map,sourcemap)

Description
mat = syncWith(map,sourcemap) updates map with data from another
occupancyMap object, sourcemap. Locations in map that are also found in sourcemap
are updated. All other cells in map are set to map.DefaultValue.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world
map. This process emulates a vehicle driving in an environment and getting updates on
obstacles in the new areas.

Load example maps. Create an occupancy map from the ternaryMap.

load exampleMaps.mat
map = occupancyMap(ternaryMap);
show(map)
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Create a smaller local map.

mapLocal = occupancyMap(ternaryMap(end-200:end,1:200));
show(mapLocal)

 syncWith
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Follow a path planned in the world map and update the local map as you move your local
frame.

Specify path locations and plot on the map.

path = [100 100
        100 250
        200 250
        300 250];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference
between points by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
    end
end

 syncWith
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the sensor. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.
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sourcemap — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the sensor. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.

See Also
binaryOccupancyMap | occupancyMap

Topics
“Occupancy Grids”

Introduced in R2019b
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updateOccupancy
Integrate probability observations at locations

Syntax
updateOccupancy(map,xy,obs)
updateOccupancy(map,ij,occval,'grid')

Description
updateOccupancy(map,xy,obs) probabilistically integrates the observation values,
obs, to each coordinate specified in xy. Observation values are determined based on the
“Inverse Sensor Model” on page 2-625.

updateOccupancy(map,ij,occval,'grid') probabilistically integrates the
occupancy values, occval, to the specified grid locations, ij, instead of world
coordinates.

Examples

Create and Modify Occupancy Map

Create a 10 m-by-10 m empty map.

map = occupancyMap(10,10,10);

Update the occupancy of world locations with specific probability values and display the
map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2 0.4 0.6 0.8 1];
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updateOccupancy(map,[x y],pvalues)
figure
show(map)

Inflate occupied areas by a radius of 0.5 m. Larger occupancy values overwrite the
smaller values.

inflate(map,0.5)
figure
show(map)

 updateOccupancy
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Get grid locations from world locations.

ij = world2grid(map,[x y]);

Set grid locations to occupied locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the vehicle. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.
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xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 vertical matrix of [x y] pairs, where n is the
number of world coordinates.
Data Types: double

ij — Grid positions
n-by-2 matrix

Grid positions, specified as an n-by-2 matrix of [i j] pairs in [rows cols] format,
where n is the number of grid positions.
Data Types: double

obs — Probability observation values
n-by-1 numeric column vector | n-by-1 logical column vector | numeric scalar | logical
scalar

Probability observation values, specified as a scalar or an n-by-1 column vector the same
size as either xy or ij.

obs values can be any value from 0 to 1, but if obs is a logical vector, the default
observation values of 0.7 (true) and 0.4 (false) are used. These values correlate to the
inverse sensor model for ray casting. If obs is a numeric or a logical scalar, the value is
applied to all coordinates in xy or ij.

occval — Probability occupancy values
scalar | column vector

Probability occupancy values, specified as a scalar or a column vector the same size as
either xy or ij. A scalar input is applied to all coordinates in either xy or ij.

Values close to 0 represent a high probability that the cell is not occupied and obstacle
free.
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More About

Inverse Sensor Model
The inverse sensor model determines how values are set along a ray from a range sensor
reading to the obstacles in the map. NaN range values are ignored. Range values greater
than maxrange are not updated.

Grid locations that contain range readings are updated with the occupied probability.
Locations before the reading are updated with the free probability. All locations after the
reading are not updated.
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See Also
binaryOccupancyMap | occupancyMap | setOccupancy

Topics
“Occupancy Grids”

Introduced in R2019b
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world2grid
Convert world coordinates to grid indices

Syntax
ij = world2grid(map,xy)

Description
ij = world2grid(map,xy) converts an array of world coordinates, xy, to an array of
grid indices, ij in [row col] format.

Examples

Create and Modify Occupancy Map

Create a 10 m-by-10 m empty map.

map = occupancyMap(10,10,10);

Update the occupancy of world locations with specific probability values and display the
map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2 0.4 0.6 0.8 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)
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Inflate occupied areas by a radius of 0.5 m. Larger occupancy values overwrite the
smaller values.

inflate(map,0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map,[x y]);

Set grid locations to occupied locations.

setOccupancy(map,ij,ones(5,1),'grid')
figure
show(map)
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Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object. This object represents the
environment of the sensor. The object contains a matrix grid with values representing the
probability of the occupancy of that cell. Values close to 1 represent a high probability
that the cell contains an obstacle. Values close to 0 represent a high probability that the
cell is not occupied and obstacle free.
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xy — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

Output Arguments
ij — Grid indices
n-by-2 matrix

Grid indices, returned as an n-by-2 matrix of [i j] pairs in [row col] format, where n
is the number of grid positions. The grid cell locations are counted from the top left
corner of the grid.
Data Types: double

See Also
binaryOccupancyMap | grid2world | occupancyMap

Topics
“Occupancy Grids”

Introduced in R2019b
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rangeSensor
Simulate range-bearing sensor readings

Description
The rangeSensor System object is a range-bearing sensor that is capable of outputting
range and angle measurements based on the given sensor pose and occupancy map. The
range-bearing readings are based on the obstacles in the occupancy map.

To simulate a range-bearing sensor using this object:

1 Create the rangeSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
rbsensor = rangeSensor
rbsensor = rangeSensor(Name,Value)

Description
rbsensor = rangeSensor returns a rangeSensor System object, rbsensor. The
sensor is capable of outputting range and angle measurements based on the sensor pose
and an occupancy map.

rbsensor = rangeSensor(Name,Value) sets properties for the sensor using one or
more name-value pairs. Unspecified properties have default values. Enclose each property
name in quotes.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Range — Minimum and maximum detectable range
[0 20] (default) | 1-by-2 positive real-valued vector

The minimum and maximum detectable range, specified as a 1-by-2 positive real-valued
vector. Units are in meters.
Example: [1 15]

Tunable: Yes
Data Types: single | double

HorizontalAngle — Minimum and maximum horizontal detection angle
[-pi pi] (default) | 1-by-2 real-valued vector

Minimum and maximum horizontal detection angle, specified as a 1-by-2 real-valued
vector. Units are in radians.
Example: [-pi/3 pi/3]
Data Types: single | double

HorizontalAngleResolution — Resolution of horizontal angle readings
0.0244 (default) | positive scalar

Resolution of horizontal angle readings, specified as a positive scalar. The resolution
defines the angular interval between two consecutive sensor readings. Units are in
radians.
Example: 0.01
Data Types: single | double
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RangeNoise — Standard deviation of range noise
0 (default) | positive scalar

The standard deviation of range noise, specified as a positive scalar. The range noise is
modeled as a zero-mean white noise process with the specified standard deviation. Units
are in meters.
Example: 0.01

Tunable: Yes
Data Types: single | double

HorizontalAngleNoise — Standard deviation of horizontal angle noise
0 (default) | positive scalar

The standard deviation of horizontal angle noise, specified as a positive scalar. The range
noise is modeled as a zero-mean white noise process with the specified standard
deviation. Units are in radians.
Example: 0.01

Tunable: Yes
Data Types: single | double

NumReadings — Number of output readings
258 (default) | positive integer

This property is read-only.

Number of output readings for each pose of the sensor, specified as a positive integer.
This property depends on the HorizonalAngle and HorizontalAngleResolution
properties.
Data Types: single | double

Usage

Syntax
[ranges,angles] = rbsensor(pose,map)
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Description
[ranges,angles] = rbsensor(pose,map) returns the range and angle readings
from the 2-D pose information and the ground-truth map.

Input Arguments
pose — Pose of sensor in map
N-by-3 real-valued matrix

Poses of the sensor in the 2-D map, specified as an N-by-3 real-valued matrix, where N is
the number of poses to simulate the sensor. Each row of the matrix corresponds to a pose
of the sensor in the order of [x, y, θ]. x and y represent the position of the sensor in the
map frame. The units of x and y are in meters. θ is the heading angle of the sensor with
respect to the positive x-direction of the map frame. The units of θ are in radians.

map — Ground-truth map
occupancyMap object | binaryOccupancyMap object

Ground-truth map, specified as an occupancyMap or a binaryOccupancyMap object.
For the occupancyMap input, the range-bearing sensor considers a cell as occupied and
returns a range reading if the occupancy probability of the cell is greater than the value
specified by the OccupiedThreshold property of the occupancy map.

Output Arguments
ranges — Range readings
R-by-N real-valued matrix

Range readings, specified as an R-by-N real-valued matrix. N is the number of poses for
which the sensor is simulated, and R is the number of sensor readings per pose of the
sensor. R is same as the value of the NumReadings property.

angles — Angle readings
R-by-1 real-valued vector

Angle readings, specified as an R-by-1 real-valued vector. R is the number of sensor
readings per pose of the sensor. R is same as the value of the NumReadings property.
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Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object

Examples

Obtain Range and Bearing Readings

Create a range-bearing sensor.

 rbsensor = rangeSensor;

Specify the pose of the sensor and the ground-truth map.

truePose = [0 0 pi/4];
trueMap = binaryOccupancyMap(eye(10));

Generate the sensor readings.

[ranges, angles] = rbsensor(truePose, trueMap);

Visualize the results using lidarScan.

scan = lidarScan(ranges, angles);
figure
plot(scan)
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

 rangeSensor
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See Also
binaryOccupancyMap | lidarScan | occupancyMap

Introduced in R2019b
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world2local
Convert world coordinates to local coordinates

Syntax
xyLocal = world2local(map,xy)

Description
xyLocal = world2local(map,xy) converts an array of world coordinates to local
coordinates.

Input Arguments
map — Map representation
occupancyMap object

Map representation, specified as a occupancyMap object.

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

Output Arguments
xyLocal — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of local coordinates.
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See Also
binaryOccupancyMap | grid2world | local2world | occupancyMap

Introduced in R2019b
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occupancyMap3D
Create 3-D occupancy map

Description
The occupancyMap3D class stores a 3-D map and map information. The map is stored as
probabilistic values in an octree data structure on page 2-646. The class handles
arbitrary environments and expands its size dynamically based on observation inputs. You
can add observations as point clouds or as specific xyz locations. These observations
update the probability values. Probabilistic values represent the occupancy of locations.
The octree data structure trims data appropriately to remain efficient both in memory and
on disk.

Creation

Syntax
omap = occupancyMap3D
omap = occupancyMap3D(res)
omap = occupancyMap3D(res,Name,Value)

Description
omap = occupancyMap3D creates an empty 3-D occupancy map with no observations
and default property values.

omap = occupancyMap3D(res) specifies a map resolution in cells/meter and sets the
Resolution property.

omap = occupancyMap3D(res,Name,Value) creates an object with additional options
specified by one or more Name,Value pair arguments. For example,
'FreeThreshold',0.25 sets the threshold to consider cells obstacle-free as a
probability value of 0.25. Enclose each property name in quotes.
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Properties
Resolution — Grid resolution
1 (default) | positive scalar

Grid resolution in cells per meter, specified as a scalar. Specify resolution on construction.
Inserting observations with precisions higher than this value are rounded down and
applied at this resolution.

FreeThreshold — Threshold to consider cells as obstacle-free
0.2 (default) | positive scalar

Threshold to consider cells as obstacle-free, specified as a positive scalar. Probability
values below this threshold are considered obstacle-free.

OccupiedThreshold — Threshold to consider cells as occupied
0.65 (default) | positive scalar

Threshold to consider cells as occupied, specified as a positive scalar. Probability values
above this threshold are considered occupied.

ProbabilitySaturation — Saturation limits on probability values
[0.001 0.999] (default) | [min max] vector

Saturation limits on probability values, specified as a [min max] vector. Values above or
below these saturation values are set to the min or max values. This property reduces
oversaturating of cells when incorporating multiple observations.

Object Functions
checkOccupancy Check if locations are free or occupied
getOccupancy Get occupancy probability of locations
inflate Inflate map
insertPointCloud Insert 3-D points or point cloud observation into map
setOccupancy Set occupancy probability of locations
show Show occupancy map
updateOccupancy Update occupancy probability at locations

Examples
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Create 3-D Occupancy Map and Inflate Points

The occupancyMap3D object stores obstacles in 3-D space, using sensor observations to
map an environment. Create a map and add points from a point cloud to identify
obstacles. Then inflate the obstacles in the map to ensure safe operating space around
obstacles.

Create an occupancyMap3D object with a map resolution of 10 cells/meter.

map3D = occupancyMap3D(10);

Define a set of 3-D points as an observation from a pose [x y z qw qx qy qz]. This
pose is for the sensor that observes these points and is centered on the origin. Define two
sets of points to insert multiple observations.

pose = [ 0 0 0 1 0 0 0];

points = repmat((0:0.25:2)', 1, 3);
points2 = [(0:0.25:2)' (2:-0.25:0)' (0:0.25:2)'];
maxRange = 5;

Insert the first set of points using insertPointCloud. The function uses the sensor pose
and the given points to insert observations into the map. The colors displayed correlate to
the height of the point only for illustrative purposes.

insertPointCloud(map3D,pose,points,maxRange)
show(map3D)
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Insert the second set of points. The ray between the sensor pose (origin) and these points
overlap points from the previous insertion. Therefore, the free space between the sensor
and the new points are updated and marked as free space.

insertPointCloud(map3D,pose,points2,maxRange)
show(map3D)
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Inflate the map to add a buffer zone for safe operation around obstacles. Define the
vehicle radius and safety distance and use the sum of these values to define the inflation
radius for the map.

vehicleRadius = 0.2;
safetyRadius = 0.3;
inflationRadius = vehicleRadius + safetyRadius;
inflate(map3D, inflationRadius);

show(map3D)
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Algorithms

Octree Data Structure
The octree data structure is a hierarchical structure used for subdivision of an
environment into cubic volumes called voxels. For a given map volume, the space is
recursively subdivided into eight voxels until achieving a desired map resolution (voxel
size) is achieved. This subdivision can be represented as a tree, which stores probability
values for locations in the map.
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The probability values in the tree have a log-odds representation. Using this
representation, locations easily recover from dynamic observations and numerical errors
due to small probabilities are reduced. To remain efficient in memory, lower branches of
the tree are pruned in the structure if they share the same occupancy values using this
log-odds representation.
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The class internally handles the organization of this data structure, including the pruning
of branches. Specify all observations as spatial coordinates when using functions such as
setOccupancy, getOccupancy, or insertPointCloud. Insertions into the tree, and
navigation through the tree, is determined based on the spatial coordinates and the
resolution of the map.

References
[1] Hornung, Armin, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard. "OctoMap: an efficient probabilistic 3D mapping framework based on
octrees." Autonomous Robots, Vol. 34, No. 3, 2013, pp. 189–206.. doi:10.1007/
s10514-012-9321-0.
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See Also
Classes
binaryOccupancyMap | occupancyMap

Functions
inflate | insertPointCloud | readOccupancyMap3D | setOccupancy | show

Introduced in R2019b
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checkOccupancy
Check if locations are free or occupied

Syntax
iOccval = checkOccupancy(map3D,xyz)

Description
iOccval = checkOccupancy(map3D,xyz) returns an array of occupancy values
specified at the xyz locations using the OccupiedThreshold and FreeThreshold
properties of the input occupancyMap3D object. Each row is a separate xyz location in
the map to check the occupancy of. Occupancy values can be obstacle-free (0), occupied
(1), or unknown (–1).

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

xyz — World coordinates
n-by-3 matrix

World coordinates, specified as an n-by-3 matrix of [x y z] points, where n is the
number of world coordinates.

Output Arguments
iOccval — Interpreted occupancy values
column vector
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Interpreted occupancy values, returned as a column vector with the same length as xyz.

Occupancy values can be obstacle-free (0), occupied (1), or unknown (–1). These values
are determined from the actual probability values and the OccupiedThreshold and
FreeThreshold properties of the map3D object.

See Also
Classes
lidarSLAM | occupancyMap | occupancyMap3D

Functions
inflate | insertPointCloud | setOccupancy | show

Introduced in R2019b
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getOccupancy
Get occupancy probability of locations

Syntax
occval = getOccupancy(map3D,xyz)

Description
occval = getOccupancy(map3D,xyz) returns an array of probability occupancy
values at the specified xyz locations in the occupancyMap3D object. Values close to 1
represent a high certainty that the cell contains an obstacle. Values close to 0 represent
certainty that the cell is not occupied and obstacle-free.

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

xyz — World coordinates
n-by-3 matrix

World coordinates, specified as an n-by-3 matrix of [x y z] points, where n is the
number of world coordinates.

Output Arguments
occval — Probability occupancy values
column vector

Probability occupancy values, returned as a column vector with the same length as xyz.

2 Classes — Alphabetical List

2-652



Values close to 0 represent certainty that the cell is not occupied and obstacle-free.

See Also
Classes
lidarSLAM | occupancyMap | occupancyMap3D

Functions
inflate | insertPointCloud | setOccupancy | show

Introduced in R2019b
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inflate
Inflate map

Syntax
inflate(map3D,radius)

Description
inflate(map3D,radius) inflates each occupied position of the specified in the input
occupancyMap3D object by the radius specified in meters. radius is rounded up to the
nearest equivalent cell based on the resolution of the map. This inflation increases the
size of the occupied locations in the map.

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

radius — Amount to inflate occupied locations
scalar

Amount to inflate occupied locations, specified as a scalar. radius is rounded up to the
nearest cell value.

See Also
Classes
lidarSLAM | occupancyMap | occupancyMap3D

Functions
insertPointCloud | setOccupancy | show
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Introduced in R2019b
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insertPointCloud
Insert 3-D points or point cloud observation into map

Syntax
insertPointCloud(map3D,pose,points,maxrange)
insertPointCloud(map3D,pose,ptcloud,maxrange)

Description
insertPointCloud(map3D,pose,points,maxrange) inserts one or more sensor
observations at the given points in the occupancy map, map3D. Occupied points are
updated with an observation of 0.7. All other points between the sensor pose and points
are treated as obstacle-free and updated with an observation of 0.4. Points outside
maxrange are not updated. NaN values are ignored.

insertPointCloud(map3D,pose,ptcloud,maxrange) inserts a ptcloud object into
the map.

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as a occupancyMap3D object.

points — Points of point cloud
n-by-3 matrix

Points of point cloud in sensor coordinates, specified as an n-by-3 matrix of [x y z]
points, where n is the number of points in the point cloud.

ptcloud — Point cloud reading
pointCloud object
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Point cloud reading, specified as a pointCloud object.

Note Using pointCloud objects requires Computer Vision Toolbox™.

pose — Position and orientation of vehicle
[x y z qw qx qy qz] vector

Position and orientation of vehicle, specified as an [x y z qw qx qy qz] vector. The
vehicle pose is an xyz-position vector with a quaternion orientation vector specified as
[qw qx qy qz].

maxrange — Maximum range of sensor
scalar

Maximum range of point cloud sensor, specified as a scalar. Points outside this range are
ignored.

See Also
Classes
lidarSLAM | occupancyMap | occupancyMap3D

Functions
inflate | setOccupancy | show

Introduced in R2019b
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setOccupancy
Set occupancy probability of locations

Syntax
setOccupancy(map3D,xyz,occval)

Description
setOccupancy(map3D,xyz,occval) assigns the occupancy values to each specified
xyz coordinate in the 3-D occupancy map.

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

xyz — World coordinates
n-by-3 matrix

World coordinates, specified as an n-by-3 matrix of [x y z] points, where n is the
number of world coordinates.

occval — Probability occupancy values
scalar | column vector

Probability occupancy values, specified as a scalar or a column vector with the same
length as xyz. A scalar input is applied to all coordinates in xyz.

Values close to 0 represent certainty that the cell is not occupied and obstacle-free.
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See Also
Classes
lidarSLAM | occupancyMap | occupancyMap3D

Functions
inflate | insertPointCloud | setOccupancy | show

Introduced in R2019b
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show
Show occupancy map

Syntax
axes = show(map3D)
show(map3D,"Parent",parent)

Description
axes = show(map3D) displays the occupancy map, map3D, in the current axes, with the
axes labels representing the world coordinates.

The function displays the 3-D environment using 3-D voxels for areas with occupancy
values greater than the OccupiedThreshold property value specified in map3D. The
color of the 3-D plot is strictly height-based.

show(map3D,"Parent",parent) displays the occupancy map in the axes handle
specified by parent.

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

parent — Axes used to plot the map
Axes object | UIAxes object

Axes used to plot the map, specified as either an Axes or UIAxes object. See axes or
uiaxes.
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Output Arguments
axes — Axes handle for map
Axes object | UIAxes object

Axes handle for map, returned as either an Axes or UIAxesobject. See axes or uiaxes.

See Also
Classes
lidarSLAM | occupancyMap | occupancyMap3D

Functions
insertPointCloud | setOccupancy | show

Introduced in R2019b
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updateOccupancy
Update occupancy probability at locations

Syntax
updateOccupancy(map3D,xyz,obs)

Description
updateOccupancy(map3D,xyz,obs) probabilistically integrates the observation
values, obs, to each specified xyz coordinate in the occupancyMap3D object, map3D.

Input Arguments
map3D — 3-D occupancy map
occupancyMap3D object

3-D occupancy map, specified as an occupancyMap3D object.

xyz — World coordinates
n-by-3 matrix

World coordinates, specified as an n-by-3 matrix of [x y z] points, where n is the
number of world coordinates.

obs — Probability observation values
numeric scalar | logical scalar | n-by-1 column vector

Probability observation values, specified as a numeric or logical scalar, or as an n-by-1
column vector with the same size as xyz.

obs values can be from 0 to 1, but if obs is a logical array, the function uses the default
observation values of 0.7 (true) and 0.4 (false). If obs is a numeric or logical scalar, the
value is applied to all coordinates in xyz.
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See Also
Classes
lidarSLAM | occupancyMap | occupancyMap3D

Functions
inflate | insertPointCloud | setOccupancy | show

Introduced in R2019b
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odometryMotionModel
Create an odometry motion model

Description
odometryMotionModel creates an odometry motion model object for differential drive
vehicles. This object contains specific motion model parameters. You can use this object
to specify the motion model parameters in the monteCarloLocalization object.

This motion model assumes that the vehicle makes pure rotation and translation motions
to travel from one location to the other. The model propagates points for either forward or
backwards motion based on these motion patterns. The elements of the Noise property
refer to the variance in the motion. To see the effect of changing the noise parameters,
use showNoiseDistribution.

Creation

Syntax
omm = odometryMotionModel

Description
omm = odometryMotionModel creates an odometry motion model object for differential
drive vehicles.

Properties
Noise — Gaussian noise for vehicle motion
[0.2 0.2 0.2 0.2] (default) | 4-element vector
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Gaussian noise for vehicle motion, specified as a 4-element vector. This property
represents the variance parameters for Gaussian noise applied to vehicle motion. The
elements of the vector correspond to the following errors in order:

• Rotational error due to rotational motion
• Rotational error due to translational motion
• Translational error due to translation motion
• Translational error due to rotational motion

Type — Type of the odometry motion model
'DifferentialDrive' (default)

This property is read-only.

Type of the odometry motion model, returned as 'DifferentialDrive'. This read-only
property indicates the type of odometry motion model being used by the object.

Object Functions
showNoiseDistribution Display noise parameter effects

Examples

Predict Poses Based On An Odometry Motion Model

This example shows how to use the odometryMotionModel class to predict the pose of a
vehicle. An odometryMotionModel object contains the motion model parameters for a
differential drive vehicle. Use the object to predict the pose of a vehicle based on its
current and previous poses and the motion model parameters.

Create odometry motion model object.

motionModel = odometryMotionModel;

Define previous poses and the current odometry reading. Each pose prediction
corresponds to a row in previousPoses vector.

previousPoses =  rand(10,3);
currentOdom = [0.1 0.1 0.1];
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The first call to the object initializes values and returns the previous poses as the current
poses.

currentPoses = motionModel(previousPoses, currentOdom);

Subsequent calls to the object with updated odometry poses returns the predicted poses
based on the motion model.

currentOdom = currentOdom + [0.1 0.1 0.05];
predPoses = motionModel(previousPoses, currentOdom);

Show Noise Distribution Effects for Odometry Motion Model

This example shows how to visualize the effect of different noise parameters on the
odometryMotionModel class. An odometryMotionModel object contains the motion
model noise parameters for a differential drive vehicle. Use showNoiseDistribution to
visualize how changing these values affect the distribution of predicted poses.

Create a motion model object.

motionModel = odometryMotionModel;

Show the distribution of particles with the existing noise parameters. Each particle is a
hypothesis for the predicted pose.

showNoiseDistribution(motionModel);
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Show the distribution with a specified odometry pose change and number of samples. The
change in odometry is used as the final pose with hypotheses distributed around based on
the Noise parameters.

showNoiseDistribution(motionModel, ...
            'OdometryPoseChange', [0.5 0.1 0.25], ...
            'NumSamples', 1000);
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Change the Noise parameters and visualize the effects. Use the same odometry pose
change and number of samples.

 motionModel.Noise = [0.2 1 0.2 1];
 
 showNoiseDistribution(motionModel, ...
            'OdometryPoseChange', [0.5 0.1 0.25], ...
            'NumSamples', 1000);
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Limitations
If you make changes to your motion model after using it with the
monteCarloLocalization object, call release on that object beforehand. For
example:

mcl = monteCarloLocalization(...); 
[isUpdated,pose,covariance] = mcl(...); 
release(mcl) 
mcl.MotionModel.PropName = value; 

 odometryMotionModel
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References
[1] Thrun, Sebatian, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press,

2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
likelihoodFieldSensor | monteCarloLocalization

Topics
“Localize TurtleBot Using Monte Carlo Localization”

Introduced in R2019b
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showNoiseDistribution
Display noise parameter effects

Syntax
showNoiseDistribution(ommObj)
showNoiseDistribution(ommObj)
showNoiseDistribution(ommObj,Name,Value)

Description
showNoiseDistribution(ommObj) shows the noise distribution for a default odometry
pose update, number of samples and the current noise parameters on the input object.

axes = showNoiseDistribution(ommObj) shows the noise distribution and returns
the axes handle.

showNoiseDistribution(ommObj,Name,Value) provides additional options specified
by one or more Name,Value pairs. Name is the property name and Value is the
corresponding value. Name must appear inside single quotes (' '). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Properties not specified retain their default values.

Examples

Show Noise Distribution Effects for Odometry Motion Model

This example shows how to visualize the effect of different noise parameters on the
odometryMotionModel class. An odometryMotionModel object contains the motion
model noise parameters for a differential drive vehicle. Use showNoiseDistribution to
visualize how changing these values affect the distribution of predicted poses.

Create a motion model object.

 showNoiseDistribution
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motionModel = odometryMotionModel;

Show the distribution of particles with the existing noise parameters. Each particle is a
hypothesis for the predicted pose.

showNoiseDistribution(motionModel);

Show the distribution with a specified odometry pose change and number of samples. The
change in odometry is used as the final pose with hypotheses distributed around based on
the Noise parameters.

showNoiseDistribution(motionModel, ...
            'OdometryPoseChange', [0.5 0.1 0.25], ...
            'NumSamples', 1000);
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Change the Noise parameters and visualize the effects. Use the same odometry pose
change and number of samples.

 motionModel.Noise = [0.2 1 0.2 1];
 
 showNoiseDistribution(motionModel, ...
            'OdometryPoseChange', [0.5 0.1 0.25], ...
            'NumSamples', 1000);

 showNoiseDistribution
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Input Arguments
ommObj — odometryMotionModel object
handle

odometryMotionModel object, specified as a handle. Create this object using
odometryMotionModel.
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'OdometryPoseChange',[1 1 pi]

OdometryPoseChange — Change in odometry
three-element vector

Change in odometry of the robot, specified as a comma-separated pair consisting of
'OdometryPoseChange' and a three-element vector, [x y theta].

NumSamples — Number of particles to display
scalar

Number of particles to display, specified as a specified as a comma-separated pair
consisting of 'NumSamples' and a scalar.

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as a comma-separated pair consisting of 'Parent' and
either an Axes or UIAxes object. See axes or uiaxes.

See Also
likelihoodFieldSensor | monteCarloLocalization | odometryMotionModel

Introduced in R2019b
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pathmetrics
Information for path metrics

Description
The pathmetrics object holds information for computing path metrics. Use object
functions to calculate smoothness, clearance, and path validity based on a set of poses
and the associated map environment.

Creation

Syntax
pathMetricsObj = pathmetrics(path)
pathMetricsObj = pathmetrics(path,validator)

Description
pathMetricsObj = pathmetrics(path) creates an object based on the input
navPath object. The state validator is assumed to be a validatorOccupancyMap
object. The path input sets the value of the “Path” on page 2-0  property.

pathMetricsObj = pathmetrics(path,validator) creates an object based on the
input navPath object and associated state validator for checking the path validity. The
validator input sets the value of the “StateValidator” on page 2-0  property.

Properties
Path — Path data structure
navPath object

Path data structure, specified as a navPath object is the path whose metric is to be
calculated.
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StateValidator — Validator for states on path
validatorOccupancyMap(stateSpaceSE2,binaryOccupancyMap(10)) (default) |
validatorOccupancyMap object

Validator for states on path, specified as a validatorOccupancyMap object that
validates the states and discretized motions based on the values in a 2-D occupancy map.

Object Functions
clearance Minimum clearance of path
isPathValid Determine if planned path is obstacle free
show Visualize path metrics in map environment
smoothness Smoothness of path

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses
and the associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in
the Dubins state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

 pathmetrics
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Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection
distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the
Cartesian coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath
object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0
(false) indicates an invalid path.

isPathValid(pathMetricsObj)
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ans = logical

   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 
          0.21

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-
line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 
          2.21

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')

 pathmetrics
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See Also
occupancyMap | occupancyMap3D | plannerRRTStar

Introduced in R2019b
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clearance
Minimum clearance of path

Syntax
clearance(pathMetricsObj)
clearance(pathMetricsObj,'Type','states')

Description
clearance(pathMetricsObj) returns the minimum clearance of the path. Clearance is
measured as the minimum distance between poses on the path and obstacles in the
specified map environment.

clearance(pathMetricsObj,'Type','states') returns the set of minimum
distances for each state of the path, in the form of an (n-1)-element vector, where n is the
number of poses.

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses
and the associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

 clearance
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statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in
the Dubins state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection
distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the
Cartesian coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath
object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);
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Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0
(false) indicates an invalid path.

isPathValid(pathMetricsObj)

ans = logical

   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 
          0.21

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-
line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 
          2.21

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')

 clearance
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Input Arguments
pathMetricsObj — Information for path metrics
pathmetrics object

Information for path metrics, specified as a pathmetrics object.

See Also
Objects
pathmetrics
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Functions
isPathValid | show | smoothness

Introduced in R2019b
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isPathValid
Determine if planned path is obstacle free

Syntax
isPathValid(pathMetricsObj)

Description
isPathValid(pathMetricsObj) returns either a logical 1 (true) if the planned path
is obstacle free or a logical 0 (false) if the path is invalid.

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses
and the associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in
the Dubins state space.

statevalidator = validatorOccupancyMap(statespace);
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Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection
distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the
Cartesian coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath
object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0
(false) indicates an invalid path.

 isPathValid

2-687



isPathValid(pathMetricsObj)

ans = logical

   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 
          0.21

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-
line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 
          2.21

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')
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Input Arguments
pathMetricsObj — Information for path metrics
pathmetrics object

Information for path metrics, specified as a pathmetrics object.

See Also
Objects
pathmetrics

 isPathValid
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Functions
clearance | show | smoothness

Introduced in R2019b
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show
Visualize path metrics in map environment

Syntax
show(pathMetricsObj)
show(pathMetricsObj,Name,Value)
axHandle = show(pathMetricsObj)

Description
show(pathMetricsObj) plots the path in the map environment with the minimum
clearance.

show(pathMetricsObj,Name,Value) specifies additional options using one or more
name-value pair arguments.

axHandle = show(pathMetricsObj) outputs the axes handle of the figure used to
plot the path.

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses
and the associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

 show

2-691



Create a Dubins state space.

statespace = stateSpaceDubins;

Create a state validator based on occupancy map to store the parameters and states in
the Dubins state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection
distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the
Cartesian coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath
object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);
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Compute and Visualize Path Metrics

Create a path metrics object.

pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0
(false) indicates an invalid path.

isPathValid(pathMetricsObj)

ans = logical

   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 
          0.21

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-
line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 
          2.21

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')

 show
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Input Arguments
pathMetricsObj — Information for path metrics
pathmetrics object

Information for path metrics, specified as a pathmetrics object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Parent',axHandle

Parent — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, specified as the comma-separated pair consisting of 'Parent'
and either an axes or uiaxes object. If you do not specify Parent, a new figure is
created.
Example: show(pathMetricsObj,'Parent',axHandle)

Metrics — Display metrics option
cell array of strings

Display metrics option, specified as the comma-separated pair consisting of 'Metrics'
and a cell array with any combination of these values:

• 'MinClearance' — Display minimum clearance of path.
• 'StatesClearance' — Display clearance of path states.
• 'Smoothness' — Display path smoothness.

Example: show(pathMetricsObj,'Metrics',
{'Smoothness','StatesClearance'})

Data Types: cell

Output Arguments
axHandle — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, returned as either an axes or uiaxes object.

See Also
Objects
pathmetrics

 show
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Functions
clearance | isPathValid | smoothness

Introduced in R2019b
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smoothness
Smoothness of path

Syntax
smoothness(pathMetricsObj)
smoothness(pathMetricsObj,'Type','segments')

Description
smoothness(pathMetricsObj) evaluates the smoothness of the planned path. Values
close to 0 indicate a smoother path. Straight-line paths return a value of 0.

smoothness(pathMetricsObj,'Type','segments') returns individual smoothness
calculations between each set of three poses on the path, in the form of a (n–2)-element
vector, where n is the number of poses.

Examples

Compute Path Metrics

Compute smoothness, clearance, and validity of a planned path based on a set of poses
and the associated map environment.

Load and Assign Map to State Validator

Create an occupancy map from an example map and set the map resolution.

load exampleMaps.mat; % simpleMap
mapResolution = 1; % cells/meter
map = occupancyMap(simpleMap,mapResolution);

Create a Dubins state space.

statespace = stateSpaceDubins;

 smoothness
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Create a state validator based on occupancy map to store the parameters and states in
the Dubins state space.

statevalidator = validatorOccupancyMap(statespace);

Assign the map to the validator.

statevalidator.Map = map;

Set the validation distance for the validator.

statevalidator.ValidationDistance = 0.01;

Update the state space bounds to be the same as the map limits.

statespace.StateBounds = [map.XWorldLimits;map.YWorldLimits;[-pi pi]];

Plan Path

Create an RRT* path planner and allow further optimization.

planner = plannerRRTStar(statespace,statevalidator);
planner.ContinueAfterGoalReached = true;

Reduce the maximum number of iterations and increase the maximum connection
distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Define start and goal states for the path planner as [x, y, theta] vectors. x and y are the
Cartesian coordinates, and theta is the orientation angle.

start = [2.5, 2.5, 0]; % [meters, meters, radians]
goal = [22.5, 8.75, 0];

Plan a path from the start state to the goal state. The plan function returns a navPath
object.

rng(100,'twister') % repeatable result
[path,solutionInfo] = plan(planner,start,goal);

Compute and Visualize Path Metrics

Create a path metrics object.
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pathMetricsObj = pathmetrics(path,statevalidator);

Check path validity. The result is 1 (true) if the planned path is obstacle free. 0
(false) indicates an invalid path.

isPathValid(pathMetricsObj)

ans = logical

   1

Calculate the minimum clearance of the path.

clearance(pathMetricsObj)

ans = 
          0.21

Evaluate the smoothness of the path. Values close to 0 indicate a smoother path. Straight-
line paths return a value of 0.

smoothness(pathMetricsObj)

ans = 
          2.21

Visualize the minimum clearance of the path.

show(pathMetricsObj)
legend('Planned Path','Minimum Clearance')

 smoothness
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Input Arguments
pathMetricsObj — Information for path metrics
pathmetrics object

Information for path metrics, specified as a pathmetrics object.

References
[1] Lindemann, Stephen R., and Steven M. LaValle. "Simple and efficient algorithms for

computing smooth, collision-free feedback laws over given cell decompositions."
The International Journal of Robotics Research 28, no. 5. 2009, pp. 600-621.
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See Also
Objects
pathmetrics

Functions
clearance | isPathValid | show

Introduced in R2019b
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plannerHybridAStar
Hybrid A* path planner

Description
The Hybrid A* path planner object generates a smooth path in a given 2-D space for
vehicles with nonholonomic constraints.

Note The Hybrid A* planner checks for collisions in the map by interpolating the motion
primitives and analytic expansion based on the ValidationDistance property of the
stateValidator object. If the ValidationDistance property is set to Inf, the object
interpolates based on the cell size of the map specified in the state validator. Inflate the
occupancy map before assigning it to the planner to account for the vehicle size.

Creation

Syntax
planner = plannerHybridAStar(validator)
planner = plannerHybridAStar(validator,Name,Value)

Description
planner = plannerHybridAStar(validator) creates a path planner object using
the Hybrid A* algorithm. Specify the validator input as a validatorOccupancyMap or
validatorVehicleCostmap object. The validator input sets the value of the
“StateValidator” on page 2-0  property.

planner = plannerHybridAStar(validator,Name,Value) sets “Properties” on
page 2-703 of the path planner by using one or more name-value pair arguments.
Enclose each property name inside single quotes (' ').
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Properties
StateValidator — State validator for planning
validatorOccupancyMap object | validatorVehicleCostmap object

State validator for planning, specified either as a validatorOccupancyMap or
validatorVehicleCostmap object.

MotionPrimitiveLength — Length of motion primitives to be generated
ceil(sqrt(2)*map_CellSize) (default) | positive scalar

Length of motion primitives to be generated, specified as the comma-separated pair
consisting of 'MotionPrimitiveLength' and a positive scalar in meters. Increase the
length for large maps or sparse environments. Decrease the length for dense
environments.

Note 'MotionPrimitiveLength' cannot exceed one-fourth the length of the
circumference of a circle based on the 'MinTurningRadius'.

Data Types: double

MinTurningRadius — Minimum turning radius of vehicle
(2*motion_primitive_length)/pi (default) | positive scalar

Minimum turning radius of vehicle, specified as the comma-separated pair consisting of
'MinTurningRadius' and a positive scalar in meters.

Note The value of 'MinTurningRadius' is set such that the
'MotionPrimitiveLength' cannot exceed one-fourth the length of the circumference
of a circle based on it.

Data Types: double

NumMotionPrimitives — Number of motion primitives to be generated
5 (default) | positive odd integer scalar

Number of motion primitives to be generated, specified as the comma-separated pair
consisting of 'NumMotionPrimitives' and a positive odd integer scalar.
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ForwardCost — Cost multiplier to travel in forward direction
1 (default) | positive scalar

Cost multiplier to travel in forward direction, specified as the comma-separated pair
consisting of 'ForwardCost' and a positive scalar. Increase the cost value to penalize
forward motion.
Data Types: double

ReverseCost — Cost multiplier to travel in reverse direction
3 (default) | positive scalar

Cost multiplier to travel in reverse direction, specified as the comma-separated pair
consisting of 'ReverseCost' and a positive scalar. Increase the cost value to penalize
reverse motion.
Data Types: double

DirectionSwitchingCost — Additive cost for switching direction of motion
0 (default) | positive scalar

Additive cost for switching direction of motion, specified as the comma-separated pair
consisting of 'DirectionSwitchingCost' and a positive scalar. Increase the cost value
to penalize direction switching.
Data Types: double

AnalyticExpansionInterval — Interval for attempting analytic expansion from
lowest cost node available
5 (default) | positive integer scalar

Interval for attempting analytic expansion from the lowest cost node available at that
instance, specified as the comma-separated pair consisting of
'AnalyticExpansionInterval' and a positive integer scalar.

The Hybrid A* path planner expands the motion primitives from the nodes with the lowest
cost available at that instance:

• The number of nodes to be expanded depends upon the number of primitives to be
generated in both the direction and their validity, the cycle repeats until
'AnalyticExpansionInterval' is reached.

• The planner then attempts an analytic expansion to reach the goal pose from the tree
using a Reeds-Shepp model. If the attempt fails, the planner repeats the cycle.
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Improve the algorithm performance by reducing the interval to increase the number of
checks for a Reeds-Shepp connection to the final goal.

InterpolationDistance — Distance between interpolated poses in output path
1 (default) | positive scalar

Distance between interpolated poses in output path, specified as the comma-separated
pair consisting of 'InterpolationDistance' and a positive scalar in meters.
Data Types: double

Object Functions
plan Find obstacle-free path between two poses
show Visualize the planned path

Examples

Obstacle-Free Path Planning Using Hybrid A Star

Plan a collision-free path for a vehicle through a parking lot by using the Hybrid A*
algorithm.

Create and Assign Map to State Validator

Load the cost values of cells in the vehicle costmap of a parking lot.

load parkingLotCostVal.mat % costVal

Create a binaryOccupancyMap with cost values.

map = binaryOccupancyMap(costVal);

Create a stateValidator object for collision checking.

validator = validatorOccupancyMap;

Assign the map to the stateValidator object.

validator.Map = map;
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Plan and Visualize Path

Initialize the plannerHybridAStar object with the stateValidator object. Specify
the MinTurningRadius and MotionPrimitiveLength properties of the planner.

planner = plannerHybridAStar(validator,'MinTurningRadius',4,'MotionPrimitiveLength',6);

Define start and goal poses for the vehicle as [x, y, theta] vectors. x and y specify the
position in meters, and theta specifies the orientation angle in radians.

startPose = [6 10 pi/2]; % [meters, meters, radians]
goalPose = [90 54 -pi/2];

Plan a path from the start pose to the goal pose.

refpath = plan(planner,startPose,goalPose);

Visualize the path using show function

show(planner)
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References
[1] Dolgov, Dmitri, Sebastian Thrun, Michael Montemerlo, and James Diebel. Practical

Search Techniques in Path Planning for Autonomous Driving. American
Association for Artificial Intelligence, 2008.

[2] Petereit, Janko, Thomas Emter, Christian W. Frey, Thomas Kopfstedt, and Andreas
Beutel. "Application of Hybrid A* to an autonomous mobile robot for path
planning in unstructured outdoor environments." ROBOTIK 2012: 7th German
Conference on Robotics. 2012, pp. 1-6.
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See Also
navPath | validatorOccupancyMap | validatorVehicleCostmap

Introduced in R2019b
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plan
Find obstacle-free path between two poses

Syntax
path = plan(planner,start,goal)

Description
path = plan(planner,start,goal) computes an obstacle-free path between start
and goal poses, specified as [x y theta] vectors, using the input
plannerHybridAStar object.

Examples

Obstacle-Free Path Planning Using Hybrid A Star

Plan a collision-free path for a vehicle through a parking lot by using the Hybrid A*
algorithm.

Create and Assign Map to State Validator

Load the cost values of cells in the vehicle costmap of a parking lot.

load parkingLotCostVal.mat % costVal

Create a binaryOccupancyMap with cost values.

map = binaryOccupancyMap(costVal);

Create a stateValidator object for collision checking.

validator = validatorOccupancyMap;

Assign the map to the stateValidator object.

 plan
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validator.Map = map;

Plan and Visualize Path

Initialize the plannerHybridAStar object with the stateValidator object. Specify
the MinTurningRadius and MotionPrimitiveLength properties of the planner.

planner = plannerHybridAStar(validator,'MinTurningRadius',4,'MotionPrimitiveLength',6);

Define start and goal poses for the vehicle as [x, y, theta] vectors. x and y specify the
position in meters, and theta specifies the orientation angle in radians.

startPose = [6 10 pi/2]; % [meters, meters, radians]
goalPose = [90 54 -pi/2];

Plan a path from the start pose to the goal pose.

refpath = plan(planner,startPose,goalPose);

Visualize the path using show function

show(planner)
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Input Arguments
planner — Hybrid A* path planner
plannerHybridAStar object

Hybrid A* path planner, specified as a plannerHybridAStar object.

start — Start location of path
three-element vector

Start location of path, specified as a 1-by-3 vector in the form [x y theta]. x and y
specify the position in meters, and theta specifies the orientation angle in radians.

 plan
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Example: [5 5 pi/2]
Data Types: double

goal — Final location of path
three-element vector

Final location of path, specified as a 1-by-3 vector in the form [x y theta]. x and y
specify the position in meters, and theta specifies the orientation angle in radians.
Example: [45 45 pi/4]
Data Types: double

Output Arguments
path — Obstacle-free path
navPath object

Obstacle-free path, returned as a navPath object.

See Also
navPath | validatorOccupancyMap | validatorVehicleCostmap

Introduced in R2019b
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show
Visualize the planned path

Syntax
show(planner)
show(planner,Name,Value)
axHandle = show(planner)

Description
show(planner) plots the Hybrid A* expansion tree and the planned path in the map.

show(planner,Name,Value) specifies additional options using one or more name-value
pair arguments.

axHandle = show(planner) outputs the axes handle of the figure used to plot the
path.

Examples

Obstacle-Free Path Planning Using Hybrid A Star

Plan a collision-free path for a vehicle through a parking lot by using the Hybrid A*
algorithm.

Create and Assign Map to State Validator

Load the cost values of cells in the vehicle costmap of a parking lot.

load parkingLotCostVal.mat % costVal

Create a binaryOccupancyMap with cost values.

map = binaryOccupancyMap(costVal);
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Create a stateValidator object for collision checking.

validator = validatorOccupancyMap;

Assign the map to the stateValidator object.

validator.Map = map;

Plan and Visualize Path

Initialize the plannerHybridAStar object with the stateValidator object. Specify
the MinTurningRadius and MotionPrimitiveLength properties of the planner.

planner = plannerHybridAStar(validator,'MinTurningRadius',4,'MotionPrimitiveLength',6);

Define start and goal poses for the vehicle as [x, y, theta] vectors. x and y specify the
position in meters, and theta specifies the orientation angle in radians.

startPose = [6 10 pi/2]; % [meters, meters, radians]
goalPose = [90 54 -pi/2];

Plan a path from the start pose to the goal pose.

refpath = plan(planner,startPose,goalPose);

Visualize the path using show function

show(planner)
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Input Arguments
planner — Hybrid A* path planner
plannerHybridAStar object

Hybrid A* path planner, specified as a plannerHybridAStar object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 show
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Positions','none'

Parent — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, specified as the comma-separated pair consisting of 'Parent'
and either an axes or uiaxes object. If you do not specify 'Parent', a new figure is
created.

Tree — Display expansion tree
'on' (default) | 'off'

Display expansion tree option, specified as the comma-separated pair consisting of
'Tree' and either 'on' or 'off'.
Example: show(planner,'Tree','off')
Data Types: string

Path — Display planned path
'on' (default) | 'off'

Display planned path option, specified as the comma-separated pair consisting of 'Path'
and either 'on' or 'off'.
Example: show(planner,'Path','off')
Data Types: string

Positions — Display start and goal points
'both' (default) | 'start' | 'goal' | 'none'

Display the start and goal points, specified as the comma-separated pair consisting of
'Positions' and one of the following:

• 'start' — Display the start point.
• 'goal' — Display the goal point.
• 'both' — Display the start and goal points.
• 'none' — Do not display any points.

Example: show(planner,'Positions','start')
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Data Types: string

Output Arguments
axHandle — Axes used to plot path
Axes object | UIAxes object

Axes used to plot path, returned as either an axes or uiaxes object.

See Also
navPath | validatorOccupancyMap | validatorVehicleCostmap

Introduced in R2019b
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plannerRRT
Create an RRT planner for geometric planning

Description
The plannerRRT object creates a rapidly-exploring random tree (RRT) planner for
solving geometric planning problems. RRT is a tree-based motion planner that builds a
search tree incrementally from samples randomly drawn from a given state space. The
tree eventually spans the search space and connects the start state to the goal state. The
general tree growing process is as follows:

1 The planner samples a random state xrand in the state space.
2 The planner finds a state xnear that is already in the search tree and is closest (based

on the distance definition in the state space) to xrand.
3 The planner expands from xnear towards xrand, until a state xnew is reached.
4 Then new state xnew is added to the search tree.

For geometric RRT, the expansion and connection between two states can be found
analytically without violating the constraints specified in the state space of the planner
object.

Creation

Syntax
planner = plannerRRT(stateSpace,stateVal)

Description
planner = plannerRRT(stateSpace,stateVal) creates an RRT planner from a
state space object, stateSpace, and a state validator object, stateVal. The state space
of stateVal must be the same as stateSpace. stateSpace and stateVal also sets
the StateSpace and StateValidator properties of the planner.
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Properties
StateSpace — State space for the planner
state space object

State space for the planner, specified as a state space object. You can use state space
objects such as stateSpaceSE2, stateSpaceDubins, and stateSpaceReedsShepp.
You can also customize a state space object using the nav.StateSpace object.
Data Types: object

StateValidator — State validator for the planner
state validator object

State validator for the planner, specified as a state validator object. You can use state
validator objects such as validatorOccupancyMap and validatorVehicleCostmap .
Data Types: object

MaxNumTreeNodes — Maximum number of nodes in the search tree
1e4 (default) | positive integer

Maximum number of nodes in the search tree, specified as a positive integer.
Data Types: single | double

MaxIterations — Maximum number of iterations
1e4 (default) | positive integer

Maximum number of iterations, specified as a positive integer.
Data Types: single | double

MaxConnectionDistance — Maximum length of motion
0.1 (default) | positive scalar

Maximum length of a motion allowed in the tree, specified as a scalar.
Data Types: single | double

GoalReachedFcn — Callback function to evaluate whether goal is reached
@nav.algs.checkIfGoalIsReached | function handle

Callback function to evaluate whether the goal is reached, specified as a function handle.
You can create your own goal reached function. The function must follow this syntax:
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 function isReached = myGoalReachedFcn(planner,currentState,goalState)

where:

• planner — The created planner object, specified as plannerRRT object.
• currentState — The current state, specified as a three element real vector.
• goalState — The goal state, specified as a three element real vector.
• isReached — A boolean variable to indicate whether the current state has reached

the goal state, returned as true or false.

Data Types: function handle

GoalBias — Probability of choosing goal state during state sampling
0.05 (default) | real scalar in [0,1]

Probability of choosing the goal state during state sampling, specified as a real scalar in
[0,1]. The property defines the probability of choosing the actual goal state during the
process of randomly selecting states from the state space. You can start by setting the
probability to a small value such as 0.05.
Data Types: single | double

Object Functions
plan Plan path between two states
copy Create copy of planner object

Examples

Plan Path Between Two States

Create a state space.

ss = stateSpaceSE2;

Create an occupanyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);
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Create an occupany map from an example map and and set map resolution as 10 cells/
meter.

load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits; [-pi pi]];

Create the path planner and increase max connection distance.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;

Set the start and goal states.

start = [0.5,0.5,0];
goal = [2.5,0.2,0];

Plan a path with default settings.

rng(100,'twister'); % for repeatable result
[pthObj,solnInfo] = planner.plan(start,goal);

Visualize the results.

map.show; hold on;
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-'); % tree expansion
plot(pthObj.States(:,1), pthObj.States(:,2),'r-','LineWidth',2) % draw path
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See Also
navPath | plannerRRTStar | stateSpaceDubins | stateSpaceReedsShepp |
stateSpaceSE2

Introduced in R2019b
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plannerRRTStar
Create an optimal RRT path planner (RRT*)

Description
The plannerRRTStar object creates an asymptotically-optimal RRT planner, RRT*. The
RRT* algorithm converges to an optimal solution in terms of the state space distance.
Also, its runtime is a constant factor of the runtime of the RRT algorithm. RRT* is used to
solve geometric planning problems. A geometric planning problem requires that any two
random states drawn from the state space can be connected.

Creation

Syntax
planner = plannerRRTStar(stateSpace,stateVal)

Description
planner = plannerRRTStar(stateSpace,stateVal) creates an RRT* planner from
a state space object, stateSpace, and a state validator object, stateVal. The state
space of stateVal must be the same as stateSpace. stateSpace and stateVal also
sets the StateSpace and StateValidator properties of the planner object.

Properties
BallRadiusContant — Constant used to estimate the near neighbors search
radius
100 (default) | positive scalar
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Constant used to estimate the near neighbors search radius, specified as a positive scalar.
With a larger ball radius, the searching radius reduces slower as the number of nodes in
the tree increases. The radius is estimated as following:

r = min γln(n)
nVd

1/d
, η

where:

• d — Dimension of the state space
• n — Number of nodes in the search tree
• η — The value of the MaxConnectionDistance property
• Vd — Volume of the unit ball in the dth dimension

Data Types: object

ContitnueAfterGoalReached — Continue to optimize after goal is reached
false (default) | true

Decide if the planner continues to optimize after the goal is reached, specified as false
or true. The planner also terminates regardless of the value of this property if the
maximum number of iterations or maximum number of tree nodes is reached.
Data Types: logical

StateSpace — State space for the planner
state space object

State space for the planner, specified as a state space object. You can use state space
objects such as stateSpaceSE2, stateSpaceDubins, and stateSpaceReedsShepp.
You can also customize a state space object using the nav.StateSpace object.
Data Types: object

StateValidator — State validator for the planner
state validator object

State validator for the planner, specified as a state validator object. You can use state
validator objects such as validatorOccupancyMap and validatorVehicleCostmap .
Data Types: object
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MaxNumTreeNodes — Maximum number of nodes in the search tree
1e4 (default) | positive integer

Maximum number of nodes in the search tree, specified as a positive integer.
Data Types: single | double

MaxIterations — Maximum number of iterations
1e4 (default) | positive integer

Maximum number of iterations, specified as a positive integer.
Data Types: single | double

MaxConnectionDistance — Maximum length of motion
0.1 (default) | positive scalar

Maximum length of a motion allowed in the tree, specified as a scalar.
Data Types: single | double

GoalReachedFcn — Callback function to determine whether goal is reached
@nav.algs.checkIfGoalIsReached | function handle

Callback function to determine whether the goal is reached, specified as a function
handle. You can create your own goal reached function. The function must follow this
syntax:

 function isReached = myGoalReachedFcn(planner,currentState,goalState)

where:

• planner — The created planner object, specified as plannerRRTStar object.
• currentState — The current state, specified as a three element real vector.
• goalState — The goal state, specified as a three element real vector.
• isReached — A boolean variable to indicate whether the current state has reached

the goal state, returned as true or false.

Data Types: function handle

GoalBias — Probability of choosing goal state during state sampling
0.05 (default) | real scalar in [0,1]
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Probability of choosing the goal state during state sampling, specified as a real scalar in
[0,1]. The property defines the probability of choosing the actual goal state during the
process of randomly selecting states from the state space. You can start by setting the
probability to a small value such as 0.05.
Data Types: single | double

Object Functions
plan Plan path between two states
copy Create copy of planner object

Examples

Plan Optimal Path Between Two States

Create a state space.

ss = stateSpaceSE2;

Create a occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupany map from an example map and and set map resolution as 10 cells/
meter.

load exampleMaps.mat
map = occupancyMap(simpleMap, 10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits; map.YWorldLimits; [-pi pi]];

Create RRT* path planner and allow further optimization.
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planner = plannerRRTStar(ss,sv);
planner.ContinueAfterGoalReached = true;

Reduce max iterations and increase max connection distance.

planner.MaxIterations = 2500;
planner.MaxConnectionDistance = 0.3;

Set the start and goal states.

start = [0.5, 0.5 0];
goal = [2.5, 0.2, 0];

Plan a path with default settings.

rng(100, 'twister') % repeatable result
[pthObj, solnInfo] = plan(planner,start,goal);

Visualize the results.

map.show;
hold on;
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2), '.-'); % tree expansion
plot(pthObj.States(:,1),pthObj.States(:,2),'r-','LineWidth',2); % draw path
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References
[1] Karaman, S. and E. Frazzoli. "Sampling-Based Algorithms for Optimal Motion

Planning." International Journal of Robotics Research . Vol. 30, Number 7, 2011,
pp 846 – 894.

See Also
navPath | plannerRRT | stateSpaceDubins | stateSpaceReedsShepp |
stateSpaceSE2
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plan
Plan path between two states

Syntax
path = plan(planner,startState,goalState)
[path,solutionInfo] = plan(planner,startState,goalState)

Description
path = plan(planner,startState,goalState) returns a path from the start state
to the goal state.

[path,solutionInfo] = plan(planner,startState,goalState) also returns
solInfo that contains the solution information of the path planning.

Input Arguments
planner — Path planner
plannerRRT object | plannerRRTStar object

Path planner, specified as a plannerRRT object or a plannerRRTStar object.
Data Types: object

startState — Start state of the path
N-element real-valued vector

Start state of the path, specified as an N-element real-valued vector. N is the dimension of
the state space.
Example: [1 1 pi/6]
Data Types: single | double

goalState — Goal state of the path
N-element real-valued vector
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Goal state of the path, specified as an N-element real-valued vector. N is the dimension of
the state space.
Example: [2 2 pi/3]
Data Types: single | double

Output Arguments
path — Object that holds planned path information
navPath object

An object that holds the planned path information, returned as a navPath object.
Data Types: object

solutionInfo — Solution Information
structure

Solution Information, returned as a structure. The fields of the structure are:

 plan
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Fields of solutionInfo

Fields Description
IsPathFound Indicates whether a path is found. It

returns as 1 if a path is found. Otherwise, it
returns 0.

ExistFlag Indicates the terminate status of the
planner, returned as

• 1 — if the goal is reached
• 2 — if the maximum number of

iterations is reached
• 3 — if the maximum number of nodes is

reached
NumNodes Number of nodes in the search tree when

the planner terminates (excluding the root
node).

NumIterations Number of "extend" routines executed.
TreeData A collection of explored states that reflects

the status of the search tree when planner
terminates. Note that NaN values are
inserted as delimiters to separate each
individual edge.

Data Types: structure

See Also
navPath | plannerRRT | plannerRRTStar | stateSpaceDubins |
stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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copy
Create copy of planner object

Syntax
planner2 = copy(planner1)

Description
planner2 = copy(planner1) creates a planner object, planner2, form a planner
object, planner1.

Input Arguments
planner1 — Path planner
plannerRRT object | plannerRRTStar object

Path planner, specified as a plannerRRT object or a plannerRRTStar object.
Data Types: object

Output Arguments
planner2 — Path planner
plannerRRT object | plannerRRTStar object

Path planner, returned as a plannerRRT object or a plannerRRTStar object.
Data Types: object

See Also
navPath | plannerRRT | plannerRRTStar | stateSpaceDubins |
stateSpaceReedsShepp | stateSpaceSE2
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poseGraph
Create 2-D pose graph

Description
A poseGraph object stores information for a 2-D pose graph representation. A pose
graph contains nodes connected by edges, with edge constraints that define the relative
pose between nodes and the uncertainty on that measurement. The
optimizePoseGraph function modifies the nodes to account for the uncertainty and
improve the overall graph.

For 3-D pose graphs, see poseGraph.

To construct a pose graph iteratively, use addRelativePose to add a node and connect
it to an existing node with specified edge constraints. Specify the uncertainty of the
measurement using an information matrix. Adding an edge between two existing nodes
creates a loop closure in the graph.

lidarSLAM (lidar-based simultaneous localization and mapping) is built around the
optimization of a 2-D pose graph.

Creation

Syntax
poseGraph = poseGraph
poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)

Description
poseGraph = poseGraph creates a 2-D pose graph object. Add poses using
addRelativePose to construct a pose graph iteratively.

 poseGraph
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poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
specifies an upper bound on the number of edges and nodes allowed in the pose graph
when generating code. This limit is only required when generating code.

Properties
NumNodes — Number of nodes in pose graph
1 (default) | positive integer

This property is read-only.

Number of nodes in pose graph, specified as a positive integer. Each node represents a
pose in the pose graph as an [x y theta] vector with an xy-position and orientation
angle, theta. To specify relative poses between nodes, use addRelativePose. To get a
list of all nodes, use nodes.

NumEdges — Number of edges in pose graph
0 (default) | nonnegative integer

This property is read-only.

Number of edges in pose graph, specified as a nonnegative integer. Each edge connects
two nodes in the pose graph. Loop closure edges are included.

NumLoopClosureEdges — Number of loop closures
0 (default) | nonnegative integer

This property is read-only.

Number of loop closures in pose graph, specified as a nonnegative integer. To get the
edge IDs of the loop closures, use the LoopClosureEdgeIDs property.

LoopClosureEdgeIDs — Loop closure edge IDs
vector

This property is read-only.

Loop closure edges IDs, specified as a vector of edge IDs.
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Object Functions
addRelativePose Add relative pose to pose graph
edges Edges in pose graph
edgeConstraints Edge constraints in pose graph
findEdgeID Find edge ID of edge
nodes Poses of nodes in pose graph
optimizePoseGraph Optimize nodes in pose graph
removeEdges Remove loop closure edges from graph
show Plot pose graph

Examples

Optimize a 2-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in
this example is from the Intel Research Lab Dataset and was generated from collecting
wheel odometry and a laser range finder sensor information in an indoor lab.

Load the Intel data set that contains a 2-D pose graph. Inspect the poseGraph object to
view the number of nodes and loop closures.

load intel-2d-posegraph.mat pg
disp(pg)

  poseGraph with properties:

               NumNodes: 1228
               NumEdges: 1483
    NumLoopClosureEdges: 256
     LoopClosureEdgeIDs: [1x256 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

title('Original Pose Graph')
show(pg,'IDs','off');

 poseGraph
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Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop
closures. Plot the optimized pose graph to see the adjustment of the nodes with loop
closures.

updatedPG = optimizePoseGraph(pg);
figure
title('Updated Pose Graph')
show(updatedPG,'IDs','off');
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[1] Grisetti, G., R. Kummerle, C. Stachniss, and W. Burgard. "A Tutorial on Graph-Based

SLAM." IEEE Intelligent Transportation Systems Magazine. Vol. 2, No. 4, 2010,
pp. 31–43. doi:10.1109/mits.2010.939925.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph objects for code generation:

poseGraph = poseGraph('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)
specifies an upper bound on the number of edges and nodes allowed in the pose graph
when generating code. This limit is only required when generating code.

See Also
Functions
addRelativePose | optimizePoseGraph | show

Objects
lidarSLAM | poseGraph3D

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b
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poseGraph3D
Create 3-D pose graph

Description
A poseGraph3D object stores information for a 3-D pose graph representation. A pose
graph contains nodes connected by edges, with edge constraints that define the relative
pose between nodes and the uncertainty on that measurement. The
optimizePoseGraph function modifies the nodes to account for the uncertainty and
improve the overall graph.

For 2-D pose graphs, see poseGraph.

To construct a pose graph iteratively, use addRelativePose to add poses and connect
them to the existing graph. Specify the uncertainty associated using an information
matrix. Specify loop closures by add extra edge constraints between existing nodes.

Creation

Syntax
poseGraph = poseGraph3D
poseGraph =
poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes)

Description
poseGraph = poseGraph3D creates a 3-D pose graph object. Add poses using
addRelativePose to construct a pose graph iteratively.

poseGraph =
poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when
generating code. This limit is only required when generating code.
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Properties
NumNodes — Number of nodes in pose graph
1 (default) | positive integer

This property is read-only.

Number of nodes in pose graph, specified as a positive integer. Each node represents a
pose in the pose graph as an [x y z qw qx qy qz] vector with an xyz-position and
quaternion orientation, [qw qx qy qz]. To specify relative poses between nodes, use
addRelativePose. To get a list of all nodes, use nodes.

Note The order of the quaternion [qw qx qy qz] uses the standard convention. Some
vehicle coordinate systems instead specify the order as [qx qy qz qw]. Check the
source of your pose graph data before adding nodes to your poseGraph3D object.

NumEdges — Number of edges in pose graph
0 (default) | nonnegative integer

This property is read-only.

Number of edges in pose graph, specified as a nonnegative integer. Each edge connects
two nodes in the pose graph. Loop closure edges are included.

NumLoopClosureEdges — Number of loop closures
0 (default) | nonnegative integer

This property is read-only.

Number of loop closures in pose graph, specified as a nonnegative integer. To get the
edge IDs of the loop closures, use the LoopClosureEdgeIDs property.

LoopClosureEdgeIDs — Loop closure edge IDs
vector

This property is read-only.

Loop closure edges IDs, specified as a vector of edge IDs.
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Object Functions
addRelativePose Add relative pose to pose graph
edges Edges in pose graph
edgeConstraints Edge constraints in pose graph
findEdgeID Find edge ID of edge
nodes Poses of nodes in pose graph
optimizePoseGraph Optimize nodes in pose graph
removeEdges Remove loop closure edges from graph
show Plot pose graph

Examples

Optimize a 3-D Pose Graph

Optimize a pose graph based on the nodes and edge constraints. The pose graph used in
this example is taken from the MIT Dataset and was generated using information
extracted from a parking garage.

Load the pose graph from the MIT dataset. Inspect the poseGraph3D object to view the
number of nodes and loop closures.

load parking-garage-posegraph.mat pg
disp(pg);

  poseGraph3D with properties:

               NumNodes: 1661
               NumEdges: 6275
    NumLoopClosureEdges: 4615
     LoopClosureEdgeIDs: [1x4615 double]

Plot the pose graph with IDs off. Red lines indicate loop closures identified in the dataset.

title('Original Pose Graph')
show(pg,'IDs','off');
view(-30,45)
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Optimize the pose graph. Nodes are adjusted based on the edge constraints and loop
closures. Plot the optimized pose graph to see the adjustment of the nodes with loop
closures.

updatedPG = optimizePoseGraph(pg);
figure
title('Updated Pose Graph')
show(updatedPG,'IDs','off');
view(-30,45)
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Use this syntax when constructing poseGraph3D objects for code generation:

poseGraph =
poseGraph3D('MaxNumEdges',maxEdges,'MaxNumNodes',maxNodes) specifies an
upper bound on the number of edges and nodes allowed in the pose graph when
generating code. This limit is only required when generating code.

See Also
Functions
addRelativePose | optimizePoseGraph

Objects
lidarSLAM | poseGraph

Introduced in R2019b
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quaternion
Create a quaternion array

Description
A quaternion is a four-part hyper-complex number used in three-dimensional rotations
and orientations.

A quaternion number is represented in the form a + bi + c j + dk, where a, b, c, and d
parts are real numbers, and i, j, and k are the basis elements, satisfying the equation: i2 =
j2 = k2 = ijk = −1.

The set of quaternions, denoted by H, is defined within a four-dimensional vector space
over the real numbers, R4. Every element of H has a unique representation based on a
linear combination of the basis elements, i, j, and k.

All rotations in 3-D can be described by an axis of rotation and angle about that axis. An
advantage of quaternions over rotation matrices is that the axis and angle of rotation is
easy to interpret. For example, consider a point in R3. To rotate the point, you define an
axis of rotation and an angle of rotation.

 quaternion
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The quaternion representation of the rotation may be expressed as
q = cos θ 2 + sin θ 2 ubi + uc j + udk , where θ is the angle of rotation and [ub, uc, and ud]
is the axis of rotation.

Creation

Syntax
quat = quaternion()
quat = quaternion(A,B,C,D)
quat = quaternion(matrix)
quat = quaternion(RV,'rotvec')
quat = quaternion(RV,'rotvecd')
quat = quaternion(RM,'rotmat',PF)
quat = quaternion(E,'euler',RS,PF)
quat = quaternion(E,'eulerd',RS,PF)

Description
quat = quaternion() creates an empty quaternion.

quat = quaternion(A,B,C,D) creates a quaternion array where the four quaternion
parts are taken from the arrays A, B, C, and D. All the inputs must have the same size and
be of the same data type.

quat = quaternion(matrix) creates an N-by-1 quaternion array from an N-by-4
matrix, where each column becomes one part of the quaternion.

quat = quaternion(RV,'rotvec') creates an N-by-1 quaternion array from an N-
by-3 matrix of rotation vectors, RV. Each row of RV represents a rotation vector in
radians.

quat = quaternion(RV,'rotvecd') creates an N-by-1 quaternion array from an N-
by-3 matrix of rotation vectors, RV. Each row of RV represents a rotation vector in
degrees.
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quat = quaternion(RM,'rotmat',PF) creates an N-by-1 quaternion array from the
3-by-3-by-N array of rotation matrices, RM. PF can be either 'point' if the Euler angles
represent point rotations or 'frame' for frame rotations.

quat = quaternion(E,'euler',RS,PF) creates an N-by-1 quaternion array from the
N-by-3 matrix, E. Each row of E represents a set of Euler angles in radians. The angles in
E are rotations about the axes in sequence RS.

quat = quaternion(E,'eulerd',RS,PF) creates an N-by-1 quaternion array from
the N-by-3 matrix, E. Each row of E represents a set of Euler angles in degrees. The
angles in E are rotations about the axes in sequence RS.

Input Arguments
A,B,C,D — Quaternion parts
comma-separated arrays of the same size

Parts of a quaternion, specified as four comma-separated scalars, matrices, or multi-
dimensional arrays of the same size.
Example: quat = quaternion(1,2,3,4) creates a quaternion of the form 1 + 2i + 3j
+ 4k.
Example: quat = quaternion([1,5],[2,6],[3,7],[4,8]) creates a 1-by-2
quaternion array where quat(1,1) = 1 + 2i + 3j + 4k and quat(1,2) = 5 + 6i
+ 7j + 8k

Data Types: single | double

matrix — Matrix of quaternion parts
N-by-4 matrix

Matrix of quaternion parts, specified as an N-by-4 matrix. Each row represents a separate
quaternion. Each column represents a separate quaternion part.
Example: quat = quaternion(rand(10,4)) creates a 10-by-1 quaternion array.
Data Types: single | double

RV — Matrix of rotation vectors
N-by-3 matrix

 quaternion

2-749



Matrix of rotation vectors, specified as an N-by-3 matrix. Each row of RV represents the
[X Y Z] elements of a rotation vector. A rotation vector is a unit vector representing the
axis of rotation scaled by the angle of rotation in radians or degrees.

To use this syntax, specify the first argument as a matrix of rotation vectors and the
second argument as the 'rotvec' or 'rotvecd'.
Example: quat = quaternion(rand(10,3),'rotvec') creates a 10-by-1 quaternion
array.
Data Types: single | double

RM — Rotation matrices
3-by-3 matrix | 3-by-3-by-N array

Array of rotation matrices, specified by a 3-by-3 matrix or 3-by-3-by-N array. Each page of
the array represents a separate rotation matrix.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: single | double

PF — Type of rotation matrix
'point' | 'frame'

Type of rotation matrix, specified by 'point' or 'frame'.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: char | string

E — Matrix of Euler angles
N-by-3 matrix

Matrix of Euler angles, specified by an N-by-3 matrix. If using the 'euler' syntax,
specify E in radians. If using the 'eulerd' syntax, specify E in degrees.
Example: quat = quaternion(E,'euler','YZY','point')
Example: quat = quaternion(E,'euler','XYZ','frame')
Data Types: single | double
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RS — Rotation sequence
character vector | scalar string

Rotation sequence, specified as a three-element character vector:

• 'YZY'
• 'YXY'
• 'ZYZ'
• 'ZXZ'
• 'XYX'
• 'XZX'
• 'XYZ'
• 'YZX'
• 'ZXY'
• 'XZY'
• 'ZYX'
• 'YXZ'

Assume you want to determine the new coordinates of a point when its coordinate system
is rotated using frame rotation. The point is defined in the original coordinate system as:

point = [sqrt(2)/2,sqrt(2)/2,0];

In this representation, the first column represents the x-axis, the second column
represents the y-axis, and the third column represents the z-axis.

You want to rotate the point using the Euler angle representation [45,45,0]. Rotate the
point using two different rotation sequences:

• If you create a quaternion rotator and specify the 'ZYX' sequence, the frame is first
rotated 45° around the z-axis, then 45° around the new y-axis.

quatRotator = quaternion([45,45,0],'eulerd','ZYX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.7071   -0.0000    0.7071
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• If you create a quaternion rotator and specify the 'YZX' sequence, the frame is first
rotated 45° around the y-axis, then 45° around the new z-axis.

quatRotator = quaternion([45,45,0],'eulerd','YZX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.8536    0.1464    0.5000

Data Types: char | string

Object Functions
classUnderlying Class of parts within quaternion
compact Convert quaternion array to N-by-4 matrix
conj Complex conjugate of quaternion
ctranspose Complex conjugate transpose of quaternion array
dist Angular distance in radians
euler Convert quaternion to Euler angles (radians)
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eulerd Convert quaternion to Euler angles (degrees)
meanrot Quaternion mean rotation
minus, - Quaternion subtraction
mtimes, * Quaternion multiplication
norm Quaternion norm
normalize Quaternion normalization
ones Create quaternion array with real parts set to one and imaginary parts

set to zero
parts Extract quaternion parts
prod Product of a quaternion array
rotateframe Quaternion frame rotation
rotatepoint Quaternion point rotation
rotmat Convert quaternion to rotation matrix
rotvec Convert quaternion to rotation vector (radians)
rotvecd Convert quaternion to rotation vector (degrees)
slerp Spherical linear interpolation
times, .* Element-wise quaternion multiplication
ldivide, .\ Element-wise quaternion left division
rdivide, ./ Element-wise quaternion right division
power, .^ Element-wise quaternion power
exp Exponential of quaternion array
log Natural logarithm of quaternion array
transpose Transpose a quaternion array
uminus, - Quaternion unary minus
zeros Create quaternion array with all parts set to zero
randrot Uniformly distributed random rotations

Examples

Create Empty Quaternion
quat = quaternion()

quat = 

  0x0 empty quaternion array

By default, the underlying class of the quaternion is a double.

classUnderlying(quat)
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ans = 
'double'

Create Quaternion by Specifying Individual Quaternion Parts

You can create a quaternion array by specifying the four parts as comma-separated
scalars, matrices, or multidimensional arrays of the same size.

Define quaternion parts as scalars.

A = 1.1;
B = 2.1;
C = 3.1;
D = 4.1;
quatScalar = quaternion(A,B,C,D)

quatScalar = quaternion
     1.1 + 2.1i + 3.1j + 4.1k

Define quaternion parts as column vectors.

A = [1.1;1.2];
B = [2.1;2.2];
C = [3.1;3.2];
D = [4.1;4.2];
quatVector = quaternion(A,B,C,D)

quatVector=2×1 object
     1.1 + 2.1i + 3.1j + 4.1k
     1.2 + 2.2i + 3.2j + 4.2k

Define quaternion parts as matrices.

A = [1.1,1.3; ...
     1.2,1.4];
B = [2.1,2.3; ...
     2.2,2.4];
C = [3.1,3.3; ...
     3.2,3.4];
D = [4.1,4.3; ...
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     4.2,4.4];
quatMatrix = quaternion(A,B,C,D)

quatMatrix=2×2 object
     1.1 + 2.1i + 3.1j + 4.1k     1.3 + 2.3i + 3.3j + 4.3k
     1.2 + 2.2i + 3.2j + 4.2k     1.4 + 2.4i + 3.4j + 4.4k

Define quaternion parts as three dimensional arrays.
A = randn(2,2,2);
B = zeros(2,2,2);
C = zeros(2,2,2);
D = zeros(2,2,2);
quatMultiDimArray = quaternion(A,B,C,D)

quatMultiDimArray = 2x2x2 quaternion array
quatMultiDimArray(:,:,1) = 

     0.53767 +       0i +       0j +       0k     -2.2588 +       0i +       0j +       0k
      1.8339 +       0i +       0j +       0k     0.86217 +       0i +       0j +       0k

quatMultiDimArray(:,:,2) = 

     0.31877 +       0i +       0j +       0k    -0.43359 +       0i +       0j +       0k
     -1.3077 +       0i +       0j +       0k     0.34262 +       0i +       0j +       0k

Create Quaternion by Specifying Quaternion Parts Matrix

You can create a scalar or column vector of quaternions by specify an N-by-4 matrix of
quaternion parts, where columns correspond to the quaternion parts A, B, C, and D.

Create a column vector of random quaternions.

quatParts = rand(3,4)

quatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706
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quat = quaternion(quatParts)

quat=3×1 object
     0.81472 + 0.91338i +  0.2785j + 0.96489k
     0.90579 + 0.63236i + 0.54688j + 0.15761k
     0.12699 + 0.09754i + 0.95751j + 0.97059k

To retrieve the quatParts matrix from quaternion representation, use compact.

retrievedquatParts = compact(quat)

retrievedquatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706

Create Quaternion by Specifying Rotation Vectors

You can create an N-by-1 quaternion array by specifying an N-by-3 matrix of rotation
vectors in radians or degrees. Rotation vectors are compact spatial representations that
have a one-to-one relationship with normalized quaternions.

Rotation Vectors in Radians

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is
normalized.

rotationVector = [0.3491,0.6283,0.3491];
quat = quaternion(rotationVector,'rotvec')

quat = quaternion
     0.92124 + 0.16994i + 0.30586j + 0.16994k

norm(quat)

ans = 1.0000

You can convert from quaternions to rotation vectors in radians using the rotvec
function. Recover the rotationVector from the quaternion, quat.
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rotvec(quat)

ans = 1×3

    0.3491    0.6283    0.3491

Rotation Vectors in Degrees

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is
normalized.

rotationVector = [20,36,20];
quat = quaternion(rotationVector,'rotvecd')

quat = quaternion
     0.92125 + 0.16993i + 0.30587j + 0.16993k

norm(quat)

ans = 1

You can convert from quaternions to rotation vectors in degrees using the rotvecd
function. Recover the rotationVector from the quaternion, quat.

rotvecd(quat)

ans = 1×3

   20.0000   36.0000   20.0000

Create Quaternion by Specifying Rotation Matrices

You can create an N-by-1 quaternion array by specifying a 3-by-3-by-N array of rotation
matrices. Each page of the rotation matrix array corresponds to one element of the
quaternion array.

Create a scalar quaternion using a 3-by-3 rotation matrix. Specify whether the rotation
matrix should be interpreted as a frame or point rotation.

rotationMatrix = [1 0         0; ...
                  0 sqrt(3)/2 0.5; ...
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                  0 -0.5      sqrt(3)/2];
quat = quaternion(rotationMatrix,'rotmat','frame')

quat = quaternion
     0.96593 + 0.25882i +       0j +       0k

You can convert from quaternions to rotation matrices using the rotmat function.
Recover the rotationMatrix from the quaternion, quat.

rotmat(quat,'frame')

ans = 3×3

    1.0000         0         0
         0    0.8660    0.5000
         0   -0.5000    0.8660

Create Quaternion by Specifying Euler Angles

You can create an N-by-1 quaternion array by specifying an N-by-3 array of Euler angles
in radians or degrees.

Euler Angles in Radians

Use the euler syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles
in radians. Specify the rotation sequence of the Euler angles and whether the angles
represent a frame or point rotation.

E = [pi/2,0,pi/4];
quat = quaternion(E,'euler','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles using the euler function. Recover the
Euler angles, E, from the quaternion, quat.

euler(quat,'ZYX','frame')
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ans = 1×3

    1.5708         0    0.7854

Euler Angles in Degrees

Use the eulerd syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles
in degrees. Specify the rotation sequence of the Euler angles and whether the angles
represent a frame or point rotation.

E = [90,0,45];
quat = quaternion(E,'eulerd','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles in degrees using the eulerd function.
Recover the Euler angles, E, from the quaternion, quat.

eulerd(quat,'ZYX','frame')

ans = 1×3

   90.0000         0   45.0000

Quaternion Algebra

Quaternions form a noncommutative associative algebra over the real numbers. This
example illustrates the rules of quaternion algebra.

Addition and Subtraction

Quaternion addition and subtraction occur part-by-part, and are commutative:

Q1 = quaternion(1,2,3,4)

Q1 = quaternion
     1 + 2i + 3j + 4k

Q2 = quaternion(9,8,7,6)
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Q2 = quaternion
     9 + 8i + 7j + 6k

Q1plusQ2 = Q1 + Q2

Q1plusQ2 = quaternion
     10 + 10i + 10j + 10k

Q2plusQ1 = Q2 + Q1

Q2plusQ1 = quaternion
     10 + 10i + 10j + 10k

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
    -8 - 6i - 4j - 2k

Q2minusQ1 = Q2 - Q1

Q2minusQ1 = quaternion
     8 + 6i + 4j + 2k

You can also perform addition and subtraction of real numbers and quaternions. The first
part of a quaternion is referred to as the real part, while the second, third, and fourth
parts are referred to as the vector. Addition and subtraction with real numbers affect only
the real part of the quaternion.

Q1plusRealNumber = Q1 + 5

Q1plusRealNumber = quaternion
     6 + 2i + 3j + 4k

Q1minusRealNumber = Q1 - 5

Q1minusRealNumber = quaternion
    -4 + 2i + 3j + 4k
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Multiplication

Quaternion multiplication is determined by the products of the basis elements and the
distributive law. Recall that multiplication of the basis elements, i, j, and k, are not
commutative, and therefore quaternion multiplication is not commutative.

Q1timesQ2 = Q1 * Q2

Q1timesQ2 = quaternion
    -52 + 16i + 54j + 32k

Q2timesQ1 = Q2 * Q1

Q2timesQ1 = quaternion
    -52 + 36i + 14j + 52k

isequal(Q1timesQ2,Q2timesQ1)

ans = logical
   0

You can also multiply a quaternion by a real number. If you multiply a quaternion by a real
number, each part of the quaternion is multiplied by the real number individually:

Q1times5 = Q1*5

Q1times5 = quaternion
      5 + 10i + 15j + 20k

Multiplying a quaternion by a real number is commutative.

isequal(Q1*5,5*Q1)

ans = logical
   1

Conjugation

The complex conjugate of a quaternion is defined such that each element of the vector
portion of the quaternion is negated.
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Q1

Q1 = quaternion
     1 + 2i + 3j + 4k

conj(Q1)

ans = quaternion
     1 - 2i - 3j - 4k

Multiplication between a quaternion and its conjugate is commutative:

isequal(Q1*conj(Q1),conj(Q1)*Q1)

ans = logical
   1

Quaternion Array Manipulation

You can organize quaternions into vectors, matrices, and multidimensional arrays. Built-in
MATLAB® functions have been enhanced to work with quaternions.

Concatenate

Quaternions are treated as individual objects during concatenation and follow MATLAB
rules for array manipulation.

Q1 = quaternion(1,2,3,4);
Q2 = quaternion(9,8,7,6);

qVector = [Q1,Q2]

qVector=1×2 object
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k

Q3 = quaternion(-1,-2,-3,-4);
Q4 = quaternion(-9,-8,-7,-6);

qMatrix = [qVector;Q3,Q4]
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qMatrix=2×2 object
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,1) = qMatrix;
qMultiDimensionalArray(:,:,2) = qMatrix

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Indexing

To access or assign elements in a quaternion array, use indexing.

qLoc2 = qMultiDimensionalArray(2)

qLoc2 = quaternion
    -1 - 2i - 3j - 4k

Replace the quaternion at index two with a quaternion one.

qMultiDimensionalArray(2) = ones('quaternion')

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
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    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Reshape

To reshape quaternion arrays, use the reshape function.

qMatReshaped = reshape(qMatrix,4,1)

qMatReshaped=4×1 object
     1 + 2i + 3j + 4k
    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k
    -9 - 8i - 7j - 6k

Transpose

To transpose quaternion vectors and matrices, use the transpose function.

qMatTransposed = transpose(qMatrix)

qMatTransposed=2×2 object
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Permute

To permute quaternion vectors, matrices, and multidimensional arrays, use the permute
function.

qMultiDimensionalArray

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k
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qMatPermute = permute(qMultiDimensionalArray,[3,1,2])

qMatPermute = 2x2x2 quaternion array
qMatPermute(:,:,1) = 

     1 + 2i + 3j + 4k     1 + 0i + 0j + 0k
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k

qMatPermute(:,:,2) = 

     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Topics
“Rotations, Orientation, and Quaternions”
“Lowpass Filter Orientation Using Quaternion SLERP”

Introduced in R2018a
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classUnderlying
Class of parts within quaternion

Syntax
underlyingClass = classUnderlying(quat)

Description
underlyingClass = classUnderlying(quat) returns the name of the class of the
parts of the quaternion quat.

Examples

Get Underlying Class of Quaternion

A quaternion is a four-part hyper-complex number used in three-dimensional
representations. The four parts of the quaternion are of data type single or double.

Create two quaternions, one with an underlying data type of single, and one with an
underlying data type of double. Verify the underlying data types by calling
classUnderlying on the quaternions.

qSingle = quaternion(single([1,2,3,4]))

qSingle = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qSingle)

ans = 
'single'

qDouble = quaternion([1,2,3,4])
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qDouble = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qDouble)

ans = 
'double'

You can separate quaternions into their parts using the parts function. Verify the parts of
each quaternion are the correct data type. Recall that double is the default MATLAB®
type.

[aS,bS,cS,dS] = parts(qSingle)

aS = single
    1

bS = single
    2

cS = single
    3

dS = single
    4

[aD,bD,cD,dD] = parts(qDouble)

aD = 1

bD = 2

cD = 3

dD = 4

Quaternions follow the same implicit casting rules as other data types in MATLAB. That
is, a quaternion with underlying data type single that is combined with a quaternion
with underlying data type double results in a quaternion with underlying data type
single. Multiply qDouble and qSingle and verify the resulting underlying data type is
single.

q = qDouble*qSingle;
classUnderlying(q)
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ans = 
'single'

Input Arguments
quat — Quaternion to investigate
scalar | vector | matrix | multi-dimensional array

Quaternion to investigate, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
underlyingClass — Underlying class of quaternion object
'single' | 'double'

Underlying class of quaternion, returned as the character vector 'single' or 'double'.
Data Types: char

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions

Objects
quaternion
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Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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compact
Convert quaternion array to N-by-4 matrix

Syntax
matrix = compact(quat)

Description
matrix = compact(quat) converts the quaternion array, quat, to an N-by-4 matrix.
The columns are made from the four quaternion parts. The ith row of the matrix
corresponds to quat(i).

Examples

Convert Quaternion Array to Compact Representation of Parts

Create a scalar quaternion with random parts. Convert the parts to a 1-by-4 vector using
compact.

randomParts = randn(1,4)

randomParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

quat = quaternion(randomParts)

quat = quaternion
     0.53767 +  1.8339i -  2.2588j + 0.86217k

quatParts = compact(quat)
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quatParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

Create a 2-by-2 array of quaternions, then convert the representation to a matrix of
quaternion parts. The output rows correspond to the linear indices of the quaternion
array.

quatArray = [quaternion([1:4;5:8]),quaternion([9:12;13:16])]

quatArray=2×2 object
      1 +  2i +  3j +  4k      9 + 10i + 11j + 12k
      5 +  6i +  7j +  8k     13 + 14i + 15j + 16k

quatArrayParts = compact(quatArray)

quatArrayParts = 4×4

     1     2     3     4
     5     6     7     8
     9    10    11    12
    13    14    15    16

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
matrix — Quaternion in matrix form
N-by-4 matrix
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Quaternion in matrix form, returned as an N-by-4 matrix, where N = numel(quat).
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | parts

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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conj
Complex conjugate of quaternion

Syntax
quatConjugate = conj(quat)

Description
quatConjugate = conj(quat) returns the complex conjugate of the quaternion,
quat.

If q = a + bi + c j + dk, the complex conjugate of q is q* = a− bi− c j− dk. Considered as a
rotation operator, the conjugate performs the opposite rotation. For example,

q = quaternion(deg2rad([16 45 30]),'rotvec');
a = q*conj(q);
rotatepoint(a,[0,1,0])

ans =

     0     1     0

Examples

Complex Conjugate of Quaternion

Create a quaternion scalar and get the complex conjugate.

q = normalize(quaternion([0.9 0.3 0.3 0.25]))

q = quaternion
     0.87727 + 0.29242i + 0.29242j + 0.24369k

qConj = conj(q)
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qConj = quaternion
     0.87727 - 0.29242i - 0.29242j - 0.24369k

Verify that a quaternion multiplied by its conjugate returns a quaternion one.

q*qConj

ans = quaternion
     1 + 0i + 0j + 0k

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to conjugate, specified as a scalar, vector, matrix, or array of quaternions.
Data Types: quaternion

Output Arguments
quatConjugate — Quaternion conjugate
scalar | vector | matrix | multidimensional array

Quaternion conjugate, returned as a quaternion or array of quaternions the same size as
quat.
Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
norm | times, .*

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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ctranspose, '
Complex conjugate transpose of quaternion array

Syntax
quatTransposed = quat'

Description
quatTransposed = quat' returns the complex conjugate transpose of the quaternion,
quat.

Examples

Vector Complex Conjugate Transpose

Create a vector of quaternions and compute its complex conjugate transpose.

quat = quaternion(randn(4,4))

quat=4×1 object
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat'

quatTransposed=1×4 object
      0.53767 -  0.31877i -   3.5784j -   0.7254k       1.8339 +   1.3077i -   2.7694j + 0.063055k      -2.2588 +  0.43359i +   1.3499j -  0.71474k      0.86217 -  0.34262i -   3.0349j +  0.20497k
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Matrix Complex Conjugate Transpose

Create a matrix of quaternions and compute its complex conjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat=2×2 object
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat'

quatTransposed=2×2 object
      0.53767 +   2.2588i -  0.31877j +  0.43359k       1.8339 -  0.86217i +   1.3077j -  0.34262k
       3.5784 +   1.3499i -   0.7254j -  0.71474k       2.7694 -   3.0349i + 0.063055j +  0.20497k

Input Arguments
quat — Quaternion to transpose
scalar | vector | matrix

Quaternion to transpose, specified as a vector or matrix or quaternions. The complex
conjugate transpose is defined for 1-D and 2-D arrays.
Data Types: quaternion

Output Arguments
quatTransposed — Conjugate transposed quaternion
scalar | vector | matrix

Conjugate transposed quaternion, returned as an N-by-M array, where quat was specified
as an M-by-N array.
Data Types: quaternion
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion | transpose, .'

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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dist
Angular distance in radians

Syntax
distance = dist(quatA,quatB)

Description
distance = dist(quatA,quatB) returns the angular distance in radians between the
quaternion rotation operators for quatA and quatB.

Examples

Calculate Quaternion Distance

Calculate the quaternion distance between a single quaternion and each element of a
vector of quaternions. Define the quaternions using Euler angles.

q = quaternion([0,0,0],'eulerd','zyx','frame')

q = quaternion
     1 + 0i + 0j + 0k

qArray = quaternion([0,45,0;0,90,0;0,180,0;0,-90,0;0,-45,0],'eulerd','zyx','frame')

qArray = 5×1 quaternion array
       0.92388 +         0i +   0.38268j +         0k
       0.70711 +         0i +   0.70711j +         0k
    6.1232e-17 +         0i +         1j +         0k
       0.70711 +         0i -   0.70711j +         0k
       0.92388 +         0i -   0.38268j +         0k
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quaternionDistance = rad2deg(dist(q,qArray))

quaternionDistance = 5×1

   45.0000
   90.0000
  180.0000
   90.0000
   45.0000

If both arguments to dist are vectors, the quaternion distance is calculated between
corresponding elements. Calculate the quaternion distance between two quaternion
vectors.

angles1 = [30,0,15; ...
           30,5,15; ...
           30,10,15; ...
           30,15,15];
angles2 = [30,6,15; ...
           31,11,15; ...
           30,16,14; ...
           30.5,21,15.5];

qVector1 = quaternion(angles1,'eulerd','zyx','frame');
qVector2 = quaternion(angles2,'eulerd','zyx','frame');

rad2deg(dist(qVector1,qVector2))

ans = 4×1

    6.0000
    6.0827
    6.0827
    6.0287

Note that a quaternion represents the same rotation as its negative. Calculate a
quaternion and its negative.

qPositive = quaternion([30,45,-60],'eulerd','zyx','frame')

qPositive = quaternion
     0.72332 - 0.53198i + 0.20056j +  0.3919k
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qNegative = -qPositive

qNegative = quaternion
    -0.72332 + 0.53198i - 0.20056j -  0.3919k

Find the distance between the quaternion and its negative.

dist(qPositive,qNegative)

ans = 0

The components of a quaternion may look different from the components of its negative,
but both expressions represent the same rotation.

Input Arguments
quatA,quatB — Quaternions to calculate distance between
scalar | vector | matrix | multidimensional array

Quaternions to calculate distance between, specified as comma-separated quaternions or
arrays of quaternions. quatA and quatB must have compatible sizes:

• size(quatA) == size(quatB), or
• numel(quatA) == 1, or
• numel(quatB) == 1, or
• if [Adim1,…,AdimN] = size(quatA) and [Bdim1,…,BdimN] = size(quatB),

then for i = 1:N, either Adimi==Bdimi or Adim==1 or Bdim==1.

If one of the quaternion arguments contains only one quaternion, then this function
returns the distances between that quaternion and every quaternion in the other
argument.

Data Types: quaternion

Output Arguments
distance — Angular distance (radians)
scalar | vector | matrix | multidimensional array
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Angular distance in radians, returned as an array. The dimensions are the maximum of
the union of size(quatA) and size(quatB).
Data Types: single | double

Algorithms
The dist function returns the angular distance between two quaternion rotation
operators.

A quaternion may be defined by an axis (ub,uc,ud) and angle of rotation θq:
q = cos θq 2 + sin θq 2 ubi + uc j + udk .

Given a quaternion in the form, q = a + bi + c j + dk, where a is the real part, you can
solve for θq: θq = 2cos−1(a).

Consider two quaternions, p and q, and the product z = p * conjugate(q). In a rotation
operator, z rotates by p and derotates by q. As p approaches q, the angle of z goes to 0,
and the product approaches the unit quaternion.

The angular distance between two quaternions can be expressed as θz = 2cos−1 real z .

Using the quaternion data type syntax, angular distance is calculated as:
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angularDistance = 2*acos(parts(p*conj(q)));

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
conj | parts | quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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euler
Convert quaternion to Euler angles (radians)

Syntax
eulerAngles = euler(quat,rotationSequence,rotationType)

Description
eulerAngles = euler(quat,rotationSequence,rotationType) converts the
quaternion, quat, to an N-by-3 matrix of Euler angles.

Examples

Convert Quaternion to Euler Angles in Radians

Convert a quaternion frame rotation to Euler angles in radians using the 'ZYX' rotation
sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesRandians = euler(quat,'ZYX','frame')

eulerAnglesRandians = 1×3

         0         0    1.5708

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array
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Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or
multidimensional array of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'XYZ' | 'XYX' | 'XZY' |
'XZX'

Rotation sequence of Euler representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you
specify a rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point
is static and the frame moves. Point rotation and frame rotation define equivalent angular
displacements but in opposite directions.
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Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (radians)
N-by-3 matrix

Euler angle representation in radians, returned as a N-by-3 matrix. N is the number of
quaternions in the quat argument.

For each row of eulerAngles, the first element corresponds to the first axis in the
rotation sequence, the second element corresponds to the second axis in the rotation
sequence, and the third element corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type
of quat.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eulerd | quaternion | rotateframe | rotatepoint

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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eulerd
Convert quaternion to Euler angles (degrees)

Syntax
eulerAngles = eulerd(quat,rotationSequence,rotationType)

Description
eulerAngles = eulerd(quat,rotationSequence,rotationType) converts the
quaternion, quat, to an N-by-3 matrix of Euler angles in degrees.

Examples

Convert Quaternion to Euler Angles in Degrees

Convert a quaternion frame rotation to Euler angles in degrees using the 'ZYX' rotation
sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesDegrees = eulerd(quat,'ZYX','frame')

eulerAnglesDegrees = 1×3

         0         0   90.0000

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array
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Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or
multidimensional array of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'XYZ' | 'XYX' | 'XZY' |
'XZX'

Rotation sequence of Euler angle representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you
specify a rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point
is static and the frame moves. Point rotation and frame rotation define equivalent angular
displacements but in opposite directions.
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Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (degrees)
N-by-3 matrix

Euler angle representation in degrees, returned as a N-by-3 matrix. N is the number of
quaternions in the quat argument.

For each row of eulerAngles, the first column corresponds to the first axis in the
rotation sequence, the second column corresponds to the second axis in the rotation
sequence, and the third column corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type
of quat.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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exp
Exponential of quaternion array

Syntax
B = exp(A)

Description
B = exp(A) computes the exponential of the elements of the quaternion array A.

Examples

Exponential of Quaternion Array

Create a 4-by-1 quaternion array A.

A = quaternion(magic(4))

A=4×1 object
     16 +  2i +  3j + 13k
      5 + 11i + 10j +  8k
      9 +  7i +  6j + 12k
      4 + 14i + 15j +  1k

Compute the exponential of A.

B = exp(A)

B=4×1 object
     5.3525e+06 + 1.0516e+06i + 1.5774e+06j + 6.8352e+06k
        -57.359 -     89.189i -     81.081j -     64.865k
        -6799.1 +     2039.1i +     1747.8j +     3495.6k
          -6.66 +     36.931i +     39.569j +     2.6379k
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Input Arguments
A — Input quaternion
scalar | vector | matrix | multidimensional array

Input quaternion, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Result
scalar | vector | matrix | multidimensional array

Result of quaternion exponential, returned as a scalar, vector, matrix, or multidimensional
array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + bi + c j + dk = a + v, the exponential is computed by

exp(A) = ea cos v + v
v sin v

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
log | power, .^

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b
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ldivide, .\
Element-wise quaternion left division

Syntax
C = A.\B

Description
C = A.\B performs quaternion element-wise division by dividing each element of
quaternion B by the corresponding element of quaternion A.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A=2×1 object
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A.\B

C=2×1 object
     0.066667 -  0.13333i -      0.2j -  0.26667k
     0.057471 - 0.068966i -  0.08046j - 0.091954k
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Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2
quaternion array.

q1 = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(q1,2,2)

A=2×2 object
     1 + 2i + 3j + 4k     4 + 5i + 6j + 7k
     2 + 3i + 4j + 5k     5 + 6i + 7j + 8k

q2 = quaternion(magic(4));
B = reshape(q2,2,2)

B=2×2 object
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

C = A.\B

C=2×2 object
          2.7 -      1.9i -      0.9j -      1.7k       1.5159 -  0.37302i -  0.15079j -  0.02381k
       2.2778 +  0.46296i -  0.57407j + 0.092593k       1.2471 +  0.91379i -  0.33908j -   0.1092k

Input Arguments
A — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of
real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or
one can be a scalar. Two inputs have compatible sizes if, for every dimension, the
dimension sizes of the inputs are the same or one of the dimensions is 1.
Data Types: quaternion | single | double
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B — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of
real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or
one can be a scalar. Two inputs have compatible sizes if, for every dimension, the
dimension sizes of the inputs are the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional
array.
Data Types: quaternion

Algorithms

Quaternion Division
Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = p . \A =
a1
p +

a2
p i +

a3
p j +

a4
p k

Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar
Given two quaternions A and B of compatible sizes, then
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C = A . \B = A−1 . * B = con j(A)
norm(A)2

. * B

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | norm | rdivide, ./ | times, .*

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b
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log
Natural logarithm of quaternion array

Syntax
B = log(A)

Description
B = log(A) computes the natural logarithm of the elements of the quaternion array A.

Examples

Logarithmic Values of Quaternion Array

Create a 3-by-1 quaternion array A.

A = quaternion(randn(3,4))

A=3×1 object
     0.53767 + 0.86217i - 0.43359j +  2.7694k
      1.8339 + 0.31877i + 0.34262j -  1.3499k
     -2.2588 -  1.3077i +  3.5784j +  3.0349k

Compute the logarithmic values of A.

B = log(A)

B=3×1 object
      1.0925 + 0.40848i - 0.20543j +  1.3121k
      0.8436 + 0.14767i + 0.15872j - 0.62533k
      1.6807 - 0.53829i +   1.473j +  1.2493k
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Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Logarithm values
scalar | vector | matrix | multidimensional array

Quaternion natural logarithm values, returned as a scalar, vector, matrix, or
multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + v = a + bi + c j + dk, the logarithm is computed by

log(A) = log A + v
v arccos a

A

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
exp | power, .^

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b
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meanrot
Quaternion mean rotation

Syntax
quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot( ___ ,nanflag)

Description
quatAverage = meanrot(quat) returns the average rotation of the elements of quat
along the first array dimension whose size not does equal 1.

• If quat is a vector, meanrot(quat) returns the average rotation of the elements.
• If quat is a matrix, meanrot(quat) returns a row vector containing the average

rotation of each column.
• If quat is a multidimensional array, then mearot(quat) operates along the first array

dimension whose size does not equal 1, treating the elements as vectors. This
dimension becomes 1 while the sizes of all other dimensions remain the same.

The meanrot function normalizes the input quaternions, quat, before calculating the
mean.

quatAverage = meanrot(quat,dim) return the average rotation along dimension
dim. For example, if quat is a matrix, then meanrot(quat,2) is a column vector
containing the mean of each row.

quatAverage = meanrot( ___ ,nanflag) specifies whether to include or omit NaN
values from the calculation for any of the previous syntaxes.
meanrot(quat,'includenan') includes all NaN values in the calculation while
mean(quat,'omitnan') ignores them.
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Examples

Quaternion Mean Rotation

Create a matrix of quaternions corresponding to three sets of Euler angles.

eulerAngles = [40 20 10; ...
               50 10 5; ...
               45 70 1];

quat = quaternion(eulerAngles,'eulerd','ZYX','frame');

Determine the average rotation represented by the quaternions. Convert the average
rotation to Euler angles in degrees for readability.

quatAverage = meanrot(quat)

quatAverage = quaternion
      0.88863 - 0.062598i +  0.27822j +  0.35918k

eulerAverage = eulerd(quatAverage,'ZYX','frame')

eulerAverage = 1×3

   45.7876   32.6452    6.0407

Average Out Rotational Noise

Use meanrot over a sequence of quaternions to average out additive noise.

Create a vector of 1e6 quaternions whose distance, as defined by the dist function, from
quaternion(1,0,0,0) is normally distributed. Plot the Euler angles corresponding to the
noisy quaternion vector.

nrows = 1e6;
ax = 2*rand(nrows,3) - 1;   
ax = ax./sqrt(sum(ax.^2,2));
ang = 0.5*randn(size(ax,1),1);
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q = quaternion(ax.*ang ,'rotvec');

noisyEulerAngles = eulerd(q,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)')
hold on
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Use meanrot to determine the average quaternion given the vector of quaternions.
Convert to Euler angles and plot the results.

qAverage = meanrot(q);

qAverageInEulerAngles = eulerd(qAverage,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(ones(nrows,1)*qAverageInEulerAngles(:,1))
title('Z-Axis')

subplot(3,1,2)

 meanrot
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plot(ones(nrows,1)*qAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)
plot(ones(nrows,1)*qAverageInEulerAngles(:,3))
title('X-Axis')
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The meanrot Algorithm and Limitations

The meanrot Algorithm

The meanrot function outputs a quaternion that minimizes the squared Frobenius norm
of the difference between rotation matrices. Consider two quaternions:

• q0 represents no rotation.
• q90 represents a 90 degree rotation about the x-axis.

q0 = quaternion([0 0 0],'eulerd','ZYX','frame');
q90 = quaternion([0 0 90],'eulerd','ZYX','frame');

Create a quaternion sweep, qSweep, that represents rotations from 0 to 180 degrees
about the x-axis.

eulerSweep = (0:1:180)';
qSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep], ...
    'eulerd','ZYX','frame');

Convert q0, q90, and qSweep to rotation matrices. In a loop, calculate the metric to
minimize for each member of the quaternion sweep. Plot the results and return the value
of the Euler sweep that corresponds to the minimum of the metric.

r0     = rotmat(q0,'frame');
r90    = rotmat(q90,'frame');
rSweep = rotmat(qSweep,'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r90),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')
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[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 45

The minimum of the metric corresponds to the Euler angle sweep at 45 degrees. That is,
meanrot defines the average between quaterion([0 0 0],'ZYX','frame') and
quaternion([0 0 90],'ZYX','frame') as quaternion([0 0
45],'ZYX','frame'). Call meanrot with q0 and q90 to verify the same result.

eulerd(meanrot([q0,q90]),'ZYX','frame')

ans = 1×3
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         0         0   45.0000

Limitations

The metric that meanrot uses to determine the mean rotation is not unique for
quaternions significantly far apart. Repeat the experiment above for quaternions that are
separated by 180 degrees.

q180 = quaternion([0 0 180],'eulerd','ZYX','frame');
r180 = rotmat(q180,'frame');

for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r180),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')
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[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 159

Quaternion means are usually calculated for rotations that are close to each other, which
makes the edge case shown in this example unlikely in real-world applications. To average
two quaternions that are significantly far apart, use the slerp function. Repeat the
experiment using slerp and verify that the quaternion mean returned is more intuitive
for large distances.

qMean = slerp(q0,q180,0.5);
q0_q180 = eulerd(qMean,'ZYX','frame')
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q0_q180 = 1×3

         0         0   90.0000

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the mean, specified as a scalar, vector, matrix, or
multidimensional array of quaternions.
Data Types: quaternion

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified,
then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The
size(quatAverage,dim) is 1, while the sizes of all other dimensions remain the same.
Data Types: double | single

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' –– Include NaN values when computing the mean rotation, resulting in
NaN.

• 'omitnan' –– Ignore all NaN values in the input.

Data Types: char | string

Output Arguments
quatAverage — Quaternion average rotation
scalar | vector | matrix | multidimensional array

 meanrot
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Quaternion average rotation, returned as a scalar, vector, matrix, or multidimensional
array.
Data Types: single | double

Algorithms
meanrot determines a quaternion mean, q, according to [1] (Sensor Fusion and Tracking
Toolbox). q is the quaternion that minimizes the squared Frobenius norm of the difference
between rotation matrices:

q = arg
min

q ∈ S3 ∑i = 1

n
A q − A qi F

2

References
[1] Markley, F. Landis, Yang Chen, John Lucas Crassidis, and Yaakov Oshman. "Average

Quaternions." Journal of Guidance, Control, and Dynamics. Vol. 30, Issue 4, 2007,
pp. 1193-1197.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | slerp

Objects
quaternion
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Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b
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minus, -
Quaternion subtraction

Syntax
C = A - B

Description
C = A - B subtracts quaternion B from quaternion A using quaternion subtraction.
Either A or B may be a real number, in which case subtraction is performed with the real
part of the quaternion argument.

Examples

Subtract a Quaternion from a Quaternion

Quaternion subtraction is defined as the subtraction of the corresponding parts of each
quaternion. Create two quaternions and perform subtraction.

Q1 = quaternion([1,0,-2,7]);
Q2 = quaternion([1,2,3,4]);

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
     0 - 2i - 5j + 3k
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Subtract a Real Number from a Quaternion

Addition and subtraction of real numbers is defined for quaternions as acting on the real
part of the quaternion. Create a quaternion and then subtract 1 from the real part.

Q = quaternion([1,1,1,1])

Q = quaternion
     1 + 1i + 1j + 1k

Qminus1 = Q - 1

Qminus1 = quaternion
     0 + 1i + 1j + 1k

Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real
numbers.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real
numbers.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

 minus, -
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Result of quaternion subtraction, returned as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mtimes, * | times, .* | uminus, -

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a

2 Classes — Alphabetical List

2-816



mtimes, *
Quaternion multiplication

Syntax
quatC = A*B

Description
quatC = A*B implements quaternion multiplication if either A or B is a quaternion.
Either A or B must be a scalar.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q
quaternion, multiply in the order pq. The rotation operator becomes pq ∗v pq , where
v represents the object to rotate specified in quaternion form. * represents
conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse
order of the desired sequence of rotations. For example, to apply a p quaternion
followed by a q quaternion, multiply in the reverse order, qp. The rotation operator
becomes qp v qp ∗.

Examples

Multiply Quaternion Scalar and Quaternion Vector

Create a 4-by-1 column vector, A, and a scalar, b. Multiply A times b.

A = quaternion(randn(4,4))

A=4×1 object
      0.53767 +  0.31877i +   3.5784j +   0.7254k
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       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

b = quaternion(randn(1,4))

b = quaternion
    -0.12414 +  1.4897i +   1.409j +  1.4172k

C = A*b

C=4×1 object
      -6.6117 +   4.8105i +  0.94224j -   4.2097k
      -2.0925 +   6.9079i +   3.9995j -   3.3614k
       1.8155 -   6.2313i -    1.336j -     1.89k
      -4.6033 +   5.8317i + 0.047161j -    2.791k

Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of
real scalars.

If B is nonscalar, then A must be scalar.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of
real scalars.

If A is nonscalar, then B must be scalar.
Data Types: quaternion | single | double
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Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a quaternion or array of quaternions.
Data Types: quaternion

Algorithms

Quaternion Multiplication by a Real Scalar
Given a quaternion

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar
The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element
multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.
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Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the
multiplication can be expanded as:

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table:

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to

Orbits, Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press,
2007.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
times, .*
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Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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norm
Quaternion norm

Syntax
N = norm(quat)

Description
N = norm(quat) returns the norm of the quaternion, quat.

Given a quaternion of the form Q = a + bi + c j + dk, the norm of the quaternion is defined
as norm(Q) = a2 + b2 + c2 + d2.

Examples

Calculate Quaternion Norm

Create a scalar quaternion and calculate its norm.

quat = quaternion(1,2,3,4);
norm(quat)

ans = 5.4772

The quaternion norm is defined as the square root of the sum of the quaternion parts
squared. Calculate the quaternion norm explicitly to verify the result of the norm
function.

[a,b,c,d] = parts(quat);
sqrt(a^2+b^2+c^2+d^2)

ans = 5.4772
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Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the norm, specified as a scalar, vector, matrix, or
multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
N — Quaternion norm
scalar | vector | matrix | multidimensional array

Quaternion norm. If the input quat is an array, the output is returned as an array the
same size as quat. Elements of the array are real numbers with the same data type as the
underlying data type of the quaternion, quat.
Data Types: single | double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
conj | normalize | parts | quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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normalize
Quaternion normalization

Syntax
quatNormalized = normalize(quat)

Description
quatNormalized = normalize(quat) normalizes the quaternion.

Given a quaternion of the form Q = a + bi + c j + dk, the normalized quaternion is defined
as Q/ a2 + b2 + c2 + d2.

Examples

Normalize Elements of Quaternion Vector

Quaternions can represent rotations when normalized. You can use normalize to
normalize a scalar, elements of a matrix, or elements of a multi-dimensional array of
quaternions. Create a column vector of quaternions, then normalize them.

quatArray = quaternion([1,2,3,4; ...
                        2,3,4,1; ...
                        3,4,1,2]);
quatArrayNormalized = normalize(quatArray)

quatArrayNormalized=3×1 object
     0.18257 + 0.36515i + 0.54772j +  0.7303k
     0.36515 + 0.54772i +  0.7303j + 0.18257k
     0.54772 +  0.7303i + 0.18257j + 0.36515k
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Input Arguments
quat — Quaternion to normalize
scalar | vector | matrix | multidimensional array

Quaternion to normalize, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
quatNormalized — Normalized quaternion
scalar | vector | matrix | multidimensional array

Normalized quaternion, returned as a quaternion or array of quaternions the same size as
quat.
Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
conj | norm | quaternion | times, .*

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a

 normalize

2-825



ones
Create quaternion array with real parts set to one and imaginary parts set to zero

Syntax
quatOnes = ones('quaternion')
quatOnes = ones(n,'quaternion')
quatOnes = ones(sz,'quaternion')
quatOnes = ones(sz1,...,szN,'quaternion')

quatOnes = ones( ___ ,'like',prototype,'quaternion')

Description
quatOnes = ones('quaternion') returns a scalar quaternion with the real part set
to 1 and the imaginary parts set to 0.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.

quatOnes = ones(n,'quaternion') returns an n-by-n quaternion matrix with the
real parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(sz,'quaternion') returns an array of quaternion ones where the
size vector, sz, defines size(qOnes).
Example: ones([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternions
with the real parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of
ones where sz1,…,szN indicates the size of each dimension.

quatOnes = ones( ___ ,'like',prototype,'quaternion') specifies the
underlying class of the returned quaternion array to be the same as the underlying class
of the quaternion prototype.
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Examples

Quaternion Scalar One

Create a quaternion scalar one.

quatOnes = ones('quaternion')

quatOnes = quaternion
     1 + 0i + 0j + 0k

Square Matrix of Quaternion Ones

Create an n-by-n matrix of quaternion ones.

n = 3;
quatOnes = ones(n,'quaternion')

quatOnes=3×3 object
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Multidimensional Array of Quaternion Ones

Create a multidimensional array of quaternion ones by defining array dimensions in order.
In this example, you create a 3-by-1-by-2 array. You can specify dimensions using a row
vector or comma-separated integers. Specify the dimensions using a row vector and
display the results:

dims = [3,1,2];
quatOnesSyntax1 = ones(dims,'quaternion')

quatOnesSyntax1 = 3x1x2 quaternion array
quatOnesSyntax1(:,:,1) = 

 ones
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     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

quatOnesSyntax1(:,:,2) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalency
of the two syntaxes:

quatOnesSyntax2 = ones(3,1,2,'quaternion');
isequal(quatOnesSyntax1,quatOnesSyntax2)

ans = logical
   1

Underlying Class of Quaternion Ones

A quaternion is a four-part hyper-complex number used in three-dimensional rotations
and orientations. You can specify the underlying data type of the parts as single or
double. The default is double.

Create a quaternion array of ones with the underlying data type set to single.

quatOnes = ones(2,'like',single(1),'quaternion')

quatOnes=2×2 object
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Verify the underlying class using the classUnderlying function.

classUnderlying(quatOnes)

ans = 
'single'
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Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value.

If n is zero or negative, then quatOnes is returned as an empty matrix.
Example: ones(4,'quaternion') returns a 4-by-4 matrix of quaternions with the real
parts set to 1 and the imaginary parts set to 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the
size of the corresponding dimension in quatOnes. If the size of any dimension is 0 or
negative, then quatOnes is returned as an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: ones(2,'like',quat,'quaternion') returns a 2-by-2 matrix of
quaternions with the same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers. If the size of any dimension is 0
or negative, then quatOnes is returned as an empty array.
Example: ones(2,3,'quaternion') returns a 2-by-3 matrix of quaternions with the
real parts set to 1 and the imaginary parts set to 0.

 ones
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
quatOnes — Quaternion ones
scalar | vector | matrix | multidimensional array

Quaternion ones, returned as a scalar, vector, matrix, or multidimensional array of
quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.
Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion | zeros

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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parts
Extract quaternion parts

Syntax
[a,b,c,d] = parts(quat)

Description
[a,b,c,d] = parts(quat) returns the parts of the quaternion array as arrays, each
the same size as quat.

Examples

Convert Quaternion to Matrix of Quaternion Parts

Convert a quaternion representation to parts using the parts function.

Create a two-element column vector of quaternions by specifying the parts.

quat = quaternion([1:4;5:8])

quat=2×1 object
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

Recover the parts from the quaternion matrix using the parts function. The parts are
returned as separate output arguments, each the same size as the input 2-by-1 column
vector of quaternions.

[qA,qB,qC,qD] = parts(quat)

qA = 2×1

 parts
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     1
     5

qB = 2×1

     2
     6

qC = 2×1

     3
     7

qD = 2×1

     4
     8

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
[a,b,c,d] — Quaternion parts
scalar | vector | matrix | multidimensional array

Quaternion parts, returned as four arrays: a, b, d, and d. Each part is the same size as
quat.
Data Types: single | double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
classUnderlying | compact | quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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2-833



power, .^
Element-wise quaternion power

Syntax
C = A.^b

Description
C = A.^b raises each element of A to the corresponding power in b.

Examples

Raise a Quaternion to a Real Scalar Power

Create a quaternion and raise it to a real scalar power.

A = quaternion(1,2,3,4)

A = quaternion
     1 + 2i + 3j + 4k

b = 3;
C = A.^b

C = quaternion
     -86 -  52i -  78j - 104k

Raise a Quaternion Array to Powers from a Multidimensional Array

Create a 2-by-1 quaternion array and raise it to powers from a 2-D array.

2 Classes — Alphabetical List

2-834



A = quaternion([1:4;5:8])

A=2×1 object
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

b = [1 0 2; 3 2 1]

b = 2×3

     1     0     2
     3     2     1

C = A.^b

C=2×3 object
        1 +    2i +    3j +    4k        1 +    0i +    0j +    0k      -28 +    4i +    6j +    8k
    -2110 -  444i -  518j -  592k     -124 +   60i +   70j +   80k        5 +    6i +    7j +    8k

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion | single | double

b — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a real scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

 power, .^
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Each element of quaternion A raised to the corresponding power in b, returned as a
scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
The polar representation of a quaternion A = a + bi + c j + dk is given by

A = A cosθ + u sinθ

where θ is the angle of rotation, and û is the unit quaternion.

Quaternion A raised by a real exponent b is given by

P = A . ^b = A b cos bθ + u sin bθ

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | log

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”
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Introduced in R2018b
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prod
Product of a quaternion array

Syntax
quatProd = prod(quat)
quatProd = prod(quat,dim)

Description
quatProd = prod(quat) returns the quaternion product of the elements of the array.

quatProd = prod(quat,dim) calculates the quaternion product along dimension dim.

Examples

Product of Quaternions in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A = reshape(quaternion(randn(9,4)),3,3)

A=3×3 object
      0.53767 +   2.7694i +    1.409j -  0.30344k      0.86217 +   0.7254i -   1.2075j +   0.8884k     -0.43359 -  0.20497i +  0.48889j -   0.8095k
       1.8339 -   1.3499i +   1.4172j +  0.29387k      0.31877 - 0.063055i +  0.71724j -   1.1471k      0.34262 -  0.12414i +   1.0347j -   2.9443k
      -2.2588 +   3.0349i +   0.6715j -  0.78728k      -1.3077 +  0.71474i +   1.6302j -   1.0689k       3.5784 +   1.4897i +  0.72689j +   1.4384k

Find the product of the quaternions in each column. The length of the first dimension is 1,
and the length of the second dimension matches size(A,2).

B = prod(A)

B=1×3 object
     -19.837 -  9.1521i +  15.813j -  19.918k     -5.4708 - 0.28535i +   3.077j -  1.2295k      -10.69 -  8.5199i -  2.8801j - 0.65338k
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Product of Specified Dimension of Quaternion Array

You can specify which dimension of a quaternion array to take the product of.

Create a 2-by-2-by-2 quaternion array.

A = reshape(quaternion(randn(8,4)),2,2,2);

Find the product of the elements in each page of the array. The length of the first
dimension matches size(A,1), the length of the second dimension matches size(A,2),
and the length of the third dimension is 1.

dim = 3;
B = prod(A,dim)

B=2×2 object
     -2.4847 +  1.1659i - 0.37547j +  2.8068k     0.28786 - 0.29876i - 0.51231j -  4.2972k
     0.38986 -  3.6606i -  2.0474j -   6.047k      -1.741 - 0.26782i +  5.4346j +  4.1452k

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Example: qProd = prod(quat) calculates the quaternion product along the first non-
singleton dimension of quat.
Data Types: quaternion

dim — Dimension
first non-singleton dimension (default) | positive integer

Dimension along which to calculate the quaternion product, specified as a positive
integer. If dim is not specified, prod operates along the first non-singleton dimension of
quat.

 prod
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
quatProd — Quaternion product
positive integer

Quaternion product, returned as quaternion array with one less non-singleton dimension
than quat.

For example, if quat is a 2-by-2-by-5 array,

• prod(quat,1) returns a 1-by-2-by-5 array.
• prod(quat,2) returns a 2-by-1-by-5 array.
• prod(quat,3) returns a 2-by-2 array.

Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mtimes, * | quaternion | times, .*

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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rdivide, ./
Element-wise quaternion right division

Syntax
C = A./B

Description
C = A./B performs quaternion element-wise division by dividing each element of
quaternion A by the corresponding element of quaternion B.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A=2×1 object
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A./B

C=2×1 object
     0.5 +   1i + 1.5j +   2k
     2.5 +   3i + 3.5j +   4k

 rdivide, ./
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Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2
quaternion array.

q1 = quaternion(magic(4));
A = reshape(q1,2,2)

A=2×2 object
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

q2 = quaternion([1:4;3:6;2:5;4:7]);
B = reshape(q2,2,2)

B=2×2 object
     1 + 2i + 3j + 4k     2 + 3i + 4j + 5k
     3 + 4i + 5j + 6k     4 + 5i + 6j + 7k

C = A./B

C=2×2 object
          2.7 -      0.1i -      2.1j -      1.7k       2.2778 + 0.092593i -  0.46296j -  0.57407k
       1.8256 - 0.081395i +  0.45349j -  0.24419k       1.4524 -      0.5i +   1.0238j -   0.2619k

Input Arguments
A — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of
real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or
one can be a scalar. Two inputs have compatible sizes if, for every dimension, the
dimension sizes of the inputs are the same or one of the dimensions is 1.
Data Types: quaternion | single | double
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B — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of
real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or
one can be a scalar. Two inputs have compatible sizes if, for every dimension, the
dimension sizes of the inputs are the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional
array.
Data Types: quaternion

Algorithms

Quaternion Division
Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = A . /p =
a1
p +

a2
p i +

a3
p j +

a4
p k

Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar
Given two quaternions A and B of compatible sizes,

 rdivide, ./
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C = A . /B = A . * B−1 = A . * con j(B)
norm(B)2

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | ldivide, .\ | norm | times, .*

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b
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randrot
Uniformly distributed random rotations

Syntax
R = randrot
R = randrot(m)
R = randrot(m1,...,mN)
R = randrot([m1,...,mN])

Description
R = randrot returns a unit quaternion drawn from a uniform distribution of random
rotations.

R = randrot(m) returns an m-by-m matrix of unit quaternions drawn from a uniform
distribution of random rotations.

R = randrot(m1,...,mN) returns an m1-by-...-by-mN array of random unit quaternions,
where m1,…, mN indicate the size of each dimension. For example, randrot(3,4) returns
a 3-by-4 matrix of random unit quaternions.

R = randrot([m1,...,mN]) returns an m1-by-...-by-mN array of random unit
quaternions, where m1,…, mN indicate the size of each dimension. For example,
randrot([3,4]) returns a 3-by-4 matrix of random unit quaternions.

Examples

Matrix of Random Rotations

Generate a 3-by-3 matrix of uniformly distributed random rotations.

r = randrot(3)

 randrot
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Create Uniform Distribution of Random Rotations

Create a vector of 500 random quaternions. Use rotatepoint on page 2-857 to visualize
the distribution of the random rotations applied to point (1, 0, 0).

q = randrot(500,1);

pt = rotatepoint(q, [1 0 0]);

figure
scatter3(pt(:,1), pt(:,2), pt(:,3))
axis equal
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Input Arguments
m — Size of square matrix
integer

Size of square quaternion matrix, specified as an integer value. If m is 0 or negative, then
R is returned as an empty matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

m1,...,mN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values. If the size of any
dimension is 0 or negative, then R is returned as an empty array.
Example: randrot(2,3) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

[m1,...,mN] — Vector of size of each dimension
row vector of integer values

Vector of size of each dimension, specified as a row vector of two or more integer values.
If the size of any dimension is 0 or negative, then R is returned as an empty array.
Example: randrot([2,3]) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
R — Random quaternions
scalar | vector | matrix | multidimensional array

Random quaternions, returned as a quaternion or array of quaternions.
Data Types: quaternion

 randrot
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References
[1] Shoemake, K. "Uniform Random Rotations." Graphics Gems III (K. David, ed.). New

York: Academic Press, 1992.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion | quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2019a
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rotateframe
Quaternion frame rotation

Syntax
rotationResult = rotateframe(quat,cartesianPoints)

Description
rotationResult = rotateframe(quat,cartesianPoints) rotates the frame of
reference for the Cartesian points using the quaternion, quat. The elements of the
quaternion are normalized before use in the rotation.

Examples

 rotateframe
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Rotate Frame Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in the
order x, y, and z. For convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;
plot(x,y,'ko')
hold on
axis([-1 1 -1 1])
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Create a quaternion vector specifying two separate rotations, one to rotate the frame 45
degrees and another to rotate the point -90 degrees about the z-axis. Use rotateframe
to perform the rotations.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','frame');
               
rereferencedPoint = rotateframe(quat,[x,y,z])

rereferencedPoint = 2×3

    0.7071   -0.0000         0
   -0.5000    0.5000         0

Plot the rereferenced points.

plot(rereferencedPoint(1,1),rereferencedPoint(1,2),'bo')
plot(rereferencedPoint(2,1),rereferencedPoint(2,2),'go')

 rotateframe
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Rereference Group of Points using Quaternion

Define two points in three-dimensional space. Define a quaternion to rereference the
points by first rotating the reference frame about the z-axis 30 degrees and then about
the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');
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Use rotateframe to reference both points using the quaternion rotation operator.
Display the result.

rP = rotateframe(quat,[a;b])

rP = 2×3

    0.6124   -0.3536    0.7071
    0.5000    0.8660   -0.0000

Visualize the original orientation and the rotated orientation of the points. Draw lines
from the origin to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

 rotateframe
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Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion or vector of
quaternions.
Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix
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Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Re-referenced Cartesian points
vector | matrix

Cartesian points defined in reference to rotated reference frame, returned as a vector or
matrix the same size as cartesianPoints.

The data type of the re-referenced Cartesian points is the same as the underlying data
type of quat.
Data Types: single | double

Algorithms
Quaternion frame rotation re-references a point specified in R3 by rotating the original
frame of reference according to a specified quaternion:

Lq u = q*uq

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified
as a quaternion.

For convenience, the rotateframe function takes a point in R3 and returns a point in R3.
Given a function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary
coordinate, [x,y,z],

point = [x,y,z];
rereferencedPoint = rotateframe(q,point)

the rotateframe function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

 rotateframe
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qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = q*uqq
4 Converts the quaternion output, vq, back to R3

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2018a
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rotatepoint
Quaternion point rotation

Syntax
rotationResult = rotatepoint(quat,cartesianPoints)

Description
rotationResult = rotatepoint(quat,cartesianPoints) rotates the Cartesian
points using the quaternion, quat. The elements of the quaternion are normalized before
use in the rotation.

Examples

Rotate Point Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in
order x, y, z. For convenient visualization, define the point on the x-y plane.

 rotatepoint
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x = 0.5;
y = 0.5;
z = 0;

plot(x,y,'ko')
hold on
axis([-1 1 -1 1])

Create a quaternion vector specifying two separate rotations, one to rotate the point 45
and another to rotate the point -90 degrees about the z-axis. Use rotatepoint to
perform the rotation.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','point');
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rotatedPoint = rotatepoint(quat,[x,y,z])

rotatedPoint = 2×3

   -0.0000    0.7071         0
    0.5000   -0.5000         0

Plot the rotated points.

plot(rotatedPoint(1,1),rotatedPoint(1,2),'bo')
plot(rotatedPoint(2,1),rotatedPoint(2,2),'go')

 rotatepoint
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Rotate Group of Points Using Quaternion

Define two points in three-dimensional space. Define a quaternion to rotate the point by
first rotating about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotatepoint to rotate both points using the quaternion rotation operator. Display
the result.

rP = rotatepoint(quat,[a;b])

rP = 2×3

    0.6124    0.5000   -0.6124
   -0.3536    0.8660    0.3536

Visualize the original orientation and the rotated orientation of the points. Draw lines
from the origin to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')
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Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion, row vector of
quaternions, or column vector of quaternions.
Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

 rotatepoint
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Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Repositioned Cartesian points
vector | matrix

Rotated Cartesian points defined using the quaternion rotation, returned as a vector or
matrix the same size as cartesianPoints.
Data Types: single | double

Algorithms
Quaternion point rotation rotates a point specified in R3 according to a specified
quaternion:

Lq(u) = quq*

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified
as a quaternion.

For convenience, the rotatepoint function takes in a point in R3 and returns a point in
R3. Given a function call with some arbitrary quaternion, q = a + bi + cj + dk, and
arbitrary coordinate, [x,y,z], for example,

rereferencedPoint = rotatepoint(q,[x,y,z])

the rotatepoint function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

2 Classes — Alphabetical List

2-862



3 Applies the rotation:

vq = quqq*
4 Converts the quaternion output, vq, back to R3

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion | rotateframe

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a

 rotatepoint
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rotmat
Convert quaternion to rotation matrix

Syntax
rotationMatrix = rotmat(quat,rotationType)

Description
rotationMatrix = rotmat(quat,rotationType) converts the quaternion, quat, to
an equivalent rotation matrix representation.

Examples

Convert Quaternion to Rotation Matrix for Point Rotation

Define a quaternion for use in point rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','point')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j + 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'point')

rotationMatrix = 3×3

    0.7071   -0.0000    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124
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To verify the rotation matrix, directly create two rotation matrices corresponding to the
rotations about the y- and x-axes. Multiply the rotation matrices and compare to the
output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           sind(theta) ; ...
      0             1           0           ; ...
     -sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) -sind(gamma) ;     ...
      0             sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

rotationMatrixVerification = 3×3

    0.7071         0    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

Convert Quaternion to Rotation Matrix for Frame Rotation

Define a quaternion for use in frame rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','frame')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j - 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'frame')

rotationMatrix = 3×3

 rotmat
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    0.7071   -0.0000   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the
rotations about the y- and x-axes. Multiply the rotation matrices and compare to the
output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           -sind(theta) ; ...
      0             1           0           ; ...
     sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) sind(gamma) ;     ...
      0             -sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

rotationMatrixVerification = 3×3

    0.7071         0   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124

Convert Quaternion Vector to Rotation Matrices

Create a 3-by-1 normalized quaternion vector.

qVec = normalize(quaternion(randn(3,4)));

Convert the quaternion array to rotation matrices. The pages of rotmatArray
correspond to the linear index of qVec.

rotmatArray = rotmat(qVec,'frame');
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Assume qVec and rotmatArray correspond to a sequence of rotations. Combine the
quaternion rotations into a single representation, then apply the quaternion rotation to
arbitrarily initialized Cartesian points.

loc = normalize(randn(1,3));
quat = prod(qVec);
rotateframe(quat,loc)

ans = 1×3

    0.9524    0.5297    0.9013

Combine the rotation matrices into a single representation, then apply the rotation matrix
to the same initial Cartesian points. Verify the quaternion rotation and rotation matrix
result in the same orientation.

totalRotMat = eye(3);
for i = 1:size(rotmatArray,3)
    totalRotMat = rotmatArray(:,:,i)*totalRotMat;
end
totalRotMat*loc'

ans = 3×1

    0.9524
    0.5297
    0.9013

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

rotationType — Type or rotation
'frame' | 'point'

 rotmat
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Type of rotation represented by the rotationMatrix output, specified as 'frame' or
'point'.
Data Types: char | string

Output Arguments
rotationMatrix — Rotation matrix representation
3-by-3 matrix | 3-by-3-by-N multidimensional array

Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N
multidimensional array.

• If quat is a scalar, rotationMatrix is returned as a 3-by-3 matrix.
• If quat is non-scalar, rotationMatrix is returned as a 3-by-3-by-N multidimensional

array, where rotationMatrix(:,:,i) is the rotation matrix corresponding to
quat(i).

The data type of the rotation matrix is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Given a quaternion of the form

q = a + bi + c j + dk ,

the equivalent rotation matrix for frame rotation is defined as

2a2− 1 + 2b2 2bc + 2ad 2bd− 2ac
2bc− 2ad 2a2− 1 + 2c2 2cd + 2ab

2bd + 2ac 2cd− 2ab 2a2− 1 + 2d2

.

The equivalent rotation matrix for point rotation is the transpose of the frame rotation
matrix:
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2a2− 1 + 2b2 2bc− 2ad 2bd + 2ac
2bc + 2ad 2a2− 1 + 2c2 2cd− 2ab

2bd− 2ac 2cd + 2ab 2a2− 1 + 2d2

.

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to

Orbits, Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press,
2007.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
euler | eulerd | quaternion | rotvec | rotvecd

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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rotvec
Convert quaternion to rotation vector (radians)

Syntax
rotationVector = rotvec(quat)

Description
rotationVector = rotvec(quat) converts the quaternion array, quat, to an N-by-3
matrix of equivalent rotation vectors in radians. The elements of quat are normalized
before conversion.

Examples

Convert Quaternion to Rotation Vector in Radians

Convert a random quaternion scalar to a rotation vector in radians

quat = quaternion(randn(1,4));
rotvec(quat)

ans = 1×3

    1.6866   -2.0774    0.7929

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array
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Quaternion to convert, specified as scalar quaternion, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (radians)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotations vectors, where
each row represents the [X Y Z] angles of the rotation vectors in radians. The ith row of
rotationVector corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
All rotations in 3-D can be represented by a three-element axis of rotation and a rotation
angle, for a total of four elements. If the rotation axis is constrained to be unit length, the
rotation angle can be distributed over the vector elements to reduce the representation to
three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .
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Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without
loss of information by distributing θ over the parts b, c, and d. The rotation vector
representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
euler | eulerd | quaternion | rotvecd

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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rotvecd
Convert quaternion to rotation vector (degrees)

Syntax
rotationVector = rotvecd(quat)

Description
rotationVector = rotvecd(quat) converts the quaternion array, quat, to an N-by-3
matrix of equivalent rotation vectors in degrees. The elements of quat are normalized
before conversion.

Examples

Convert Quaternion to Rotation Vector in Degrees

Convert a random quaternion scalar to a rotation vector in degrees.

quat = quaternion(randn(1,4));
rotvecd(quat)

ans = 1×3

   96.6345 -119.0274   45.4312

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array
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Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (degrees)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotation vectors, where
each row represents the [x y z] angles of the rotation vectors in degrees. The ith row of
rotationVector corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
All rotations in 3-D can be represented by four elements: a three-element axis of rotation
and a rotation angle. If the rotation axis is constrained to be unit length, the rotation
angle can be distributed over the vector elements to reduce the representation to three
elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation in degrees, and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .
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Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without
loss of information by distributing θ over the parts b, c, and d. The rotation vector
representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | eulerd | rotvec

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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slerp
Spherical linear interpolation

Syntax
q0 = slerp(q1,q2,T)

Description
q0 = slerp(q1,q2,T) spherically interpolates between q1 and q2 by the interpolation
coefficient T.

Examples

Interpolate Between Two Quaternions

Create two quaternions with the following interpretation:

1 a = 45 degree rotation around the z-axis
2 c = -45 degree rotation around the z-axis

a = quaternion([45,0,0],'eulerd','ZYX','frame');
c = quaternion([-45,0,0],'eulerd','ZYX','frame');

Call slerp with the quaternions a and c and specify an interpolation coefficient of 0.5.

interpolationCoefficient = 0.5;

b = slerp(a,c,interpolationCoefficient);

The output of slerp, b, represents an average rotation of a and c. To verify, convert b to
Euler angles in degrees.

averageRotation = eulerd(b,'ZYX','frame')
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averageRotation = 1×3

     0     0     0

The interpolation coefficient is specified as a normalized value between 0 and 1, inclusive.
An interpolation coefficient of 0 corresponds to the a quaternion, and an interpolation
coefficient of 1 corresponds to the c quaternion. Call slerp with coefficients 0 and 1 to
confirm.

b = slerp(a,c,[0,1]);
eulerd(b,'ZYX','frame')

ans = 2×3

   45.0000         0         0
  -45.0000         0         0

You can create smooth paths between quaternions by specifying arrays of equally spaced
interpolation coefficients.

path = 0:0.1:1;

interpolatedQuaternions = slerp(a,c,path);

For quaternions that represent rotation only about a single axis, specifying interpolation
coefficients as equally spaced results in quaternions equally spaced in Euler angles.
Convert interpolatedQuaternions to Euler angles and verify that the difference
between the angles in the path is constant.

k = eulerd(interpolatedQuaternions,'ZYX','frame');
abc = abs(diff(k))

abc = 10×3

    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
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    9.0000         0         0

Alternatively, you can use the dist function to verify that the distance between the
interpolated quaternions is consistent. The dist function returns angular distance in
radians; convert to degrees for easy comparison.

def = rad2deg(dist(interpolatedQuaternions(2:end),interpolatedQuaternions(1:end-1)))

def = 1×10

    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000

SLERP Minimizes Great Circle Path

The SLERP algorithm interpolates along a great circle path connecting two quaternions.
This example shows how the SLERP algorithm minimizes the great circle path.

Define three quaternions:

1 q0 - quaternion indicating no rotation from the global frame
2 q179 - quaternion indicating a 179 degree rotation about the z-axis
3 q180 - quaternion indicating a 180 degree rotation about the z-axis
4 q181 - quaternion indicating a 181 degree rotation about the z-axis

q0 = ones(1,'quaternion');

q179 = quaternion([179,0,0],'eulerd','ZYX','frame');

q180 = quaternion([180,0,0],'eulerd','ZYX','frame');

q181 = quaternion([181,0,0],'eulerd','ZYX','frame');

Use slerp to interpolate between q0 and the three quaternion rotations. Specify that the
paths are traveled in 10 steps.

T = linspace(0,1,10);

q179path = slerp(q0,q179,T);
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q180path = slerp(q0,q180,T);
q181path = slerp(q0,q181,T);

Plot each path in terms of Euler angles in degrees.

q179pathEuler = eulerd(q179path,'ZYX','frame');
q180pathEuler = eulerd(q180path,'ZYX','frame');
q181pathEuler = eulerd(q181path,'ZYX','frame');

plot(T,q179pathEuler(:,1),'bo', ...
     T,q180pathEuler(:,1),'r*', ...
     T,q181pathEuler(:,1),'gd');
legend('Path to 179 degrees', ...
       'Path to 180 degrees', ...
       'Path to 181 degrees')
xlabel('Interpolation Coefficient')
ylabel('Z-Axis Rotation (Degrees)')
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The path between q0 and q179 is clockwise to minimize the great circle distance. The
path between q0 and q181 is counterclockwise to minimize the great circle distance. The
path between q0 and q180 can be either clockwise or counterclockwise, depending on
numerical rounding.

Input Arguments
q1 — Quaternion
scalar | vector | matrix | multidimensional array
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Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same
size or any one can be a scalar. Two inputs have compatible sizes if, for every dimension,
the dimension sizes of the inputs are either the same or one of them is 1.
Data Types: quaternion

q2 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same
size or any one can be a scalar. Two inputs have compatible sizes if, for every dimension,
the dimension sizes of the inputs are either the same or one of the dimension sizes is 1.
Data Types: quaternion

T — Interpolation coefficient
scalar | vector | matrix | multidimensional array

Interpolation coefficient, specified as a scalar, vector, matrix, or multidimensional array of
numbers with each element in the range [0,1].

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same
size or any one can be a scalar. Two inputs have compatible sizes if, for every dimension,
the dimension sizes of the inputs are either the same or one of the dimension sizes is 1.
Data Types: single | double

Output Arguments
q0 — Interpolated quaternion
scalar | vector | matrix | multidimensional array

Interpolated quaternion, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion
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Algorithms
Quaternion spherical linear interpolation (SLERP) is an extension of linear interpolation
along a plane to spherical interpolation in three dimensions. The algorithm was first
proposed in [1] (Sensor Fusion and Tracking Toolbox). Given two quaternions, q1 and q2,
SLERP interpolates a new quaternion, q0, along the great circle that connects q1 and q2.
The interpolation coefficient, T, determines how close the output quaternion is to either
q1 and q2.

The SLERP algorithm can be described in terms of sinusoids:

q0 = sin (1− T)θ
sin θ q1 + sin Tθ

sin θ q2

where q1 and q2 are normalized quaternions, and θ is half the angular distance between
q1 and q2.

References
[1] Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGGRAPH

Computer Graphics Vol. 19, Issue 3, 1985, pp. 345–354.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | meanrot

Objects
quaternion
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Topics
“Lowpass Filter Orientation Using Quaternion SLERP”
“Rotations, Orientation, and Quaternions”

Introduced in R2018b
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times, .*
Element-wise quaternion multiplication

Syntax
quatC = A.*B

Description
quatC = A.*B returns the element-by-element quaternion multiplication of quaternion
arrays.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the same order
as the desired sequence of rotations. For example, to apply a p quaternion followed by
a q quaternion, multiply in the order pq. The rotation operator becomes pq ∗v pq ,
where v represents the object to rotate in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse
order of the desired sequence of rotations. For example, to apply a p quaternion
followed by a q quaternion, multiply in the reverse order, qp. The rotation operator
becomes qp v qp ∗.

Examples

Multiply Two Quaternion Vectors

Create two vectors, A and B, and multiply them element by element.

A = quaternion([1:4;5:8]);
B = A;
C = A.*B
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C=2×1 object
     -28 +   4i +   6j +   8k
    -124 +  60i +  70j +  80k

Multiply Two Quaternion Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by element.

A = reshape(quaternion(randn(9,4)),3,3);
B = reshape(quaternion(randn(9,4)),3,3);
C = A.*B

C=3×3 object
     0.60169 +  2.4332i -  2.5844j + 0.51646k    -0.49513 +  1.1722i +  4.4401j -   1.217k      2.3126 + 0.16856i +  1.0474j -  1.0921k
     -4.2329 +  2.4547i +  3.7768j + 0.77484k    -0.65232 - 0.43112i -  1.4645j - 0.90073k     -1.8897 - 0.99593i +  3.8331j + 0.12013k
     -4.4159 +  2.1926i +  1.9037j -  4.0303k     -2.0232 +  0.4205i - 0.17288j +  3.8529k     -2.9137 -  5.5239i -  1.3676j +  3.0654k

Note that quaternion multiplication is not commutative:

isequal(C,B.*A)

ans = logical
   0

Multiply Quaternion Row and Column Vectors

Create a row vector a and a column vector b, then multiply them. The 1-by-3 row vector
and 4-by-1 column vector combine to produce a 4-by-3 matrix with all combinations of
elements multiplied.

a = [zeros('quaternion'),ones('quaternion'),quaternion(randn(1,4))]

a=1×3 object
           0 +       0i +       0j +       0k           1 +       0i +       0j +       0k     0.53767 +  1.8339i -  2.2588j + 0.86217k

b = quaternion(randn(4,4))
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b=4×1 object
      0.31877 +   3.5784i +   0.7254j -  0.12414k
      -1.3077 +   2.7694i - 0.063055j +   1.4897k
     -0.43359 -   1.3499i +  0.71474j +    1.409k
      0.34262 +   3.0349i -  0.20497j +   1.4172k

a.*b

ans=4×3 object
            0 +        0i +        0j +        0k      0.31877 +   3.5784i +   0.7254j -  0.12414k      -4.6454 +   2.1636i +   2.9828j +   9.6214k
            0 +        0i +        0j +        0k      -1.3077 +   2.7694i - 0.063055j +   1.4897k      -7.2087 -   4.2197i +   2.5758j +   5.8136k
            0 +        0i +        0j +        0k     -0.43359 -   1.3499i +  0.71474j +    1.409k       2.6421 -     5.32i -   2.3841j -   1.3547k
            0 +        0i +        0j +        0k      0.34262 +   3.0349i -  0.20497j +   1.4172k      -7.0663 -  0.76439i -  0.86648j +   7.5369k

Input Arguments
A — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an
array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or
one can be a scalar. Two inputs have compatible sizes if, for every dimension, the
dimension sizes of the inputs are the same or one of them is 1.
Data Types: quaternion | single | double

B — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an
array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or
one can be a scalar. Two inputs have compatible sizes if, for every dimension, the
dimension sizes of the inputs are the same or one of them is 1.
Data Types: quaternion | single | double
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Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms

Quaternion Multiplication by a Real Scalar
Given a quaternion,

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar
The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element
multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.
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Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the
multiplication can be expanded as:

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table.

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to

Orbits, Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press,
2007.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
mtimes, * | prod | quaternion
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Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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transpose, .'
Transpose a quaternion array

Syntax
Y = quat.'

Description
Y = quat.' returns the non-conjugate transpose of the quaternion array, quat.

Examples

Vector Transpose

Create a vector of quaternions and compute its nonconjugate transpose.

quat = quaternion(randn(4,4))

quat=4×1 object
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat.'

quatTransposed=1×4 object
      0.53767 +  0.31877i +   3.5784j +   0.7254k       1.8339 -   1.3077i +   2.7694j - 0.063055k      -2.2588 -  0.43359i -   1.3499j +  0.71474k      0.86217 +  0.34262i +   3.0349j -  0.20497k
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Matrix Transpose

Create a matrix of quaternions and compute its nonconjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat=2×2 object
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat.'

quatTransposed=2×2 object
      0.53767 -   2.2588i +  0.31877j -  0.43359k       1.8339 +  0.86217i -   1.3077j +  0.34262k
       3.5784 -   1.3499i +   0.7254j +  0.71474k       2.7694 +   3.0349i - 0.063055j -  0.20497k

Input Arguments
quat — Quaternion array to transpose
vector | matrix

Quaternion array to transpose, specified as a vector or matrix of quaternions. transpose
is defined for 1-D and 2-D arrays. For higher-order arrays, use permute.
Data Types: quaternion

Output Arguments
Y — Transposed quaternion array
vector | matrix

Transposed quaternion array, returned as an N-by-M array, where quat was specified as
an M-by-N array.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ctranspose | quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a

2 Classes — Alphabetical List

2-892



uminus, -
Quaternion unary minus

Syntax
mQuat = -quat

Description
mQuat = -quat negates the elements of quat and stores the result in mQuat.

Examples

Negate Elements of Quaternion Matrix

Unary minus negates each part of a the quaternion. Create a 2-by-2 matrix, Q.

Q = quaternion(randn(2),randn(2),randn(2),randn(2))

Q=2×2 object
      0.53767 +  0.31877i +   3.5784j +   0.7254k      -2.2588 -  0.43359i -   1.3499j +  0.71474k
       1.8339 -   1.3077i +   2.7694j - 0.063055k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Negate the parts of each quaternion in Q.

R = -Q

R=2×2 object
     -0.53767 -  0.31877i -   3.5784j -   0.7254k       2.2588 +  0.43359i +   1.3499j -  0.71474k
      -1.8339 +   1.3077i -   2.7694j + 0.063055k     -0.86217 -  0.34262i -   3.0349j +  0.20497k
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Input Arguments
quat — Quaternion array
scalar | vector | matrix | multidimensional array

Quaternion array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
mQuat — Negated quaternion array
scalar | vector | matrix | multidimensional array

Negated quaternion array, returned as the same size as quat.
Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
minus, - | quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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zeros
Create quaternion array with all parts set to zero

Syntax
quatZeros = zeros('quaternion')
quatZeros = zeros(n,'quaternion')
quatZeros = zeros(sz,'quaternion')
quatZeros = zeros(sz1,...,szN,'quaternion')

quatZeros = zeros( ___ ,'like',prototype,'quaternion')

Description
quatZeros = zeros('quaternion') returns a scalar quaternion with all parts set to
zero.

quatZeros = zeros(n,'quaternion') returns an n-by-n matrix of quaternions.

quatZeros = zeros(sz,'quaternion') returns an array of quaternions where the
size vector, sz, defines size(quatZeros).

quatZeros = zeros(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array
of quaternions where sz1,…,szN indicates the size of each dimension.

quatZeros = zeros( ___ ,'like',prototype,'quaternion') specifies the
underlying class of the returned quaternion array to be the same as the underlying class
of the quaternion prototype.

Examples

Quaternion Scalar Zero

Create a quaternion scalar zero.
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quatZeros = zeros('quaternion')

quatZeros = quaternion
     0 + 0i + 0j + 0k

Square Matrix of Quaternions

Create an n-by-n array of quaternion zeros.

n = 3;
quatZeros = zeros(n,'quaternion')

quatZeros=3×3 object
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k

Multidimensional Array of Quaternion Zeros

Create a multidimensional array of quaternion zeros by defining array dimensions in
order. In this example, you create a 3-by-1-by-2 array. You can specify dimensions using a
row vector or comma-separated integers.

Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatZerosSyntax1 = zeros(dims,'quaternion')

quatZerosSyntax1 = 3x1x2 quaternion array
quatZerosSyntax1(:,:,1) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

quatZerosSyntax1(:,:,2) = 
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     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalence
of the two syntaxes:

quatZerosSyntax2 = zeros(3,1,2,'quaternion');
isequal(quatZerosSyntax1,quatZerosSyntax2)

ans = logical
   1

Underlying Class of Quaternion Zeros

A quaternion is a four-part hyper-complex number used in three-dimensional
representations. You can specify the underlying data type of the parts as single or
double. The default is double.

Create a quaternion array of zeros with the underlying data type set to single.

quatZeros = zeros(2,'like',single(1),'quaternion')

quatZeros=2×2 object
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k

Verify the underlying class using the classUnderlying function.

classUnderlying(quatZeros)

ans = 
'single'
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Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value. If n is 0 or negative, then
quatZeros is returned as an empty matrix.
Example: zeros(4,'quaternion') returns a 4-by-4 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the
size of the corresponding dimension in quatZeros. If the size of any dimension is 0 or
negative, then quatZeros is returned as an empty array.
Example: zeros([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternion
zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: zeros(2,'like',quat,'quaternion') returns a 2-by-2 matrix of
quaternions with the same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers.

• If the size of any dimension is 0, then quatZeros is returned as an empty array.
• If the size of any dimension is negative, then it is treated as 0.
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Example: zeros(2,3,'quaternion') returns a 2-by-3 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
quatZeros — Quaternion zeros
scalar | vector | matrix | multidimensional array

Quaternion zeros, returned as a quaternion or array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion zero is defined as
Q = 0 + 0i + 0j + 0k.
Data Types: quaternion

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ones

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018a
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rateControl
Execute loop at fixed frequency

Description
The rateControl object enables you to run a loop at a fixed frequency. It also collects
statistics about the timing of the loop iterations. Use waitfor in the loop to pause code
execution until the next time step. The loop operates every DesiredPeriod seconds,
unless the enclosed code takes longer to operate. The object uses the OverrunAction
property to determine how it handles longer loop operation times. The default setting,
'slip', immediately executes the loop if LastPeriod is greater than DesiredPeriod.
Using 'drop' causes the waitfor method to wait until the next multiple of
DesiredPeriod is reached to execute the next loop.

Tip The scheduling resolution of your operating system and the level of other system
activity can affect rate execution accuracy. As a result, accurate rate timing is limited to
100 Hz for execution of MATLAB code. To improve performance and execution speeds,
use code generation.

Creation

Syntax
rateObj = rateControl(desiredRate)

Description
rateObj = rateControl(desiredRate) creates an object that operates loops at a
fixed-rate based on your system time and directly sets the DesireRate property.
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Properties
DesiredRate — Desired execution rate
scalar

Desired execution rate of loop, specified as a scalar in Hz. When using waitfor, the loop
operates every DesiredRate seconds, unless the loop takes longer. It then begins the
next loop based on the specified OverrunAction.

DesiredPeriod — Desired time period between executions
scalar

Desired time period between executions, specified as a scalar in seconds. This property is
equal to the inverse of DesiredRate.

TotalElapsedTime — Elapsed time since construction or reset
scalar

Elapsed time since construction or reset, specified as a scalar in seconds.

LastPeriod — Elapsed time between last two calls to waitfor
NaN (default) | scalar

Elapsed time between last two calls to waitfor, specified as a scalar. By default,
LastPeriod is set to NaN until waitfor is called for the first time. After the first call,
LastPeriod equals TotalElapsedTime.

OverrunAction — Method for handling overruns
'slip' (default) | 'drop'

Method for handling overruns, specified as one of these character vectors:

• 'drop' — waits until the next time interval equal to a multiple of DesiredPeriod
• 'slip' — immediately executes the loop again
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Each code section calls waitfor at the end of execution.

Object Functions
waitfor Pause code execution to achieve desired execution rate
statistics Statistics of past execution periods
reset Reset Rate object

Examples
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Run Loop at Fixed Rate

Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the
object prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
    time = r.TotalElapsedTime;
    fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
    waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.008895
Iteration: 2 - Time Elapsed: 1.005288
Iteration: 3 - Time Elapsed: 2.006203
Iteration: 4 - Time Elapsed: 3.010300
Iteration: 5 - Time Elapsed: 4.005049
Iteration: 6 - Time Elapsed: 5.004715
Iteration: 7 - Time Elapsed: 6.003483
Iteration: 8 - Time Elapsed: 7.003705
Iteration: 9 - Time Elapsed: 8.004860
Iteration: 10 - Time Elapsed: 9.003329

Each iteration executes at a 1-second interval.

Get Statistics From Rate Object Execution

Create a rateControl object for running at 20 Hz.

r = rateControl(20);

Start a loop and control operation using the rateControl object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Get Rate object statistics after loop operation.

stats = statistics(r)
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stats = struct with fields:
              Periods: [1x30 double]
           NumPeriods: 30
        AveragePeriod: 0.0500
    StandardDeviation: 5.1280e-04
          NumOverruns: 0

Run Loop At Fixed Rate and Reset Rate Object

Create a rateControl object for running at 20 Hz.

r = rateControl(2);

Start a loop and control operation using the Rate object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Display the rateControl object properties after loop operation.

disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 15.0120
          LastPeriod: 0.4992

Reset the object to restart the time statistics.

reset(r);
disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 0.0061
          LastPeriod: NaN
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Compatibility Considerations

rateControl was renamed
Behavior change in future release

The rateControl object was renamed from robotics.Rate. Use rateControl for all
object creation.

See Also
reset | rosrate | statistics | waitfor

Topics
“Execute Code at a Fixed-Rate”

Introduced in R2016a
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reset
Reset Rate object

Syntax
reset(rate)

Description
reset(rate) resets the state of the Rate object, including the elapsed time and all
statistics about previous periods. reset is useful if you want to run multiple successive
loops at the same rate, or if the object is created before the loop is executed.

Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired
rate and other information about the execution. See rateControl for more information.

Examples

Run Loop At Fixed Rate and Reset Rate Object

Create a rateControl object for running at 20 Hz.

r = rateControl(2);

Start a loop and control operation using the Rate object.

for i = 1:30
    % Your code goes here
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    waitfor(r);
end

Display the rateControl object properties after loop operation.

disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 15.0120
          LastPeriod: 0.4992

Reset the object to restart the time statistics.

reset(r);
disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 0.0061
          LastPeriod: NaN

See Also
rateControl | waitfor

Topics
“Execute Code at a Fixed-Rate”

Introduced in R2016a
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statistics
Statistics of past execution periods

Syntax
stats = statistics(rate)

Description
stats = statistics(rate) returns statistics of previous periods of code execution.
stats is a struct with these fields: Periods, NumPeriods, AveragePeriod,
StandardDeviation, and NumOverruns.

Here is a sample execution graphic using the default setting, 'slip', for the
OverrunAction property in the Rate object. See OverrunAction for more information
on overrun code execution.

The output of statistics is:

stats = 

              Periods: [0.7 0.11 0.7 0.11]
           NumPeriods: 4
        AveragePeriod: 0.09
    StandardDeviation: 0.0231
          NumOverruns: 2
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Input Arguments
rate — Rate object
handle

Rate object, specified as an object handle. This object contains the information for the
DesiredRate and other info about the execution. See rateControl for more
information.

Output Arguments
stats — Time execution statistics
structure

Time execution statistics, returned as a structure. This structure contains the following
fields:

• Period — All time periods (returned in seconds) used to calculate statistics as an
indexed array. stats.Period(end) is the most recent period.

• NumPeriods — Number of elements in Periods
• AveragePeriod — Average time in seconds
• StandardDeviation — Standard deviation of all periods in seconds, centered

around the mean stored in AveragePeriod
• NumOverruns — Number of periods with overrun

Examples

Get Statistics From Rate Object Execution

Create a rateControl object for running at 20 Hz.

r = rateControl(20);

Start a loop and control operation using the rateControl object.

for i = 1:30
    % Your code goes here
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    waitfor(r);
end

Get Rate object statistics after loop operation.

stats = statistics(r)

stats = struct with fields:
              Periods: [1x30 double]
           NumPeriods: 30
        AveragePeriod: 0.0500
    StandardDeviation: 5.1280e-04
          NumOverruns: 0

See Also
rateControl | waitfor

Topics
“Execute Code at a Fixed-Rate”

Introduced in R2016a
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waitfor
Package: robotics

Pause code execution to achieve desired execution rate

Syntax
waitfor(rate)
numMisses = waitfor(rate)

Description
waitfor(rate) pauses execution until the code reaches the desired execution rate. The
function accounts for the time that is spent executing code between waitfor calls.

numMisses = waitfor(rate) returns the number of iterations missed while executing
code between calls.

Examples

Run Loop at Fixed Rate

Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the
object prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
    time = r.TotalElapsedTime;
    fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
    waitfor(r);
end
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Iteration: 1 - Time Elapsed: 0.008895
Iteration: 2 - Time Elapsed: 1.005288
Iteration: 3 - Time Elapsed: 2.006203
Iteration: 4 - Time Elapsed: 3.010300
Iteration: 5 - Time Elapsed: 4.005049
Iteration: 6 - Time Elapsed: 5.004715
Iteration: 7 - Time Elapsed: 6.003483
Iteration: 8 - Time Elapsed: 7.003705
Iteration: 9 - Time Elapsed: 8.004860
Iteration: 10 - Time Elapsed: 9.003329

Each iteration executes at a 1-second interval.

Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired
rate and other information about the execution. See robotics.Rate for more
information.

Output Arguments
numMisses — Number of missed task executions
scalar

Number of missed task executions, returned as a scalar. waitfor returns the number of
times the task was missed in the Rate object based on the LastPeriod time. For
example, if the desired rate is 1 Hz and the last period was 3.2 seconds, numMisses
returns 3.

See Also
rateControl

Topics
“Execute Code at a Fixed-Rate”
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Introduced in R2016a
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reedsSheppConnection
Reeds-Shepp path connection type

Description
The reedSheppConnection object holds information for computing a
reedsSheppPathSegment object to connect between poses. A Reeds-Shepp path
segment connects two poses as a sequence of five motions. The motion options are:

• Straight
• Left turn at maximum steer
• Right turn at maximum steer
• No movement

A Reeds-Shepp path segment supports both forward and backward motion.

Use this connection object to define parameters for a vehicle motion model, including the
minimum turning radius and options for path types. To generate a path segment between
poses using this connection type, call the connect function.

Creation

Syntax
reedsConnObj = reedsSheppConnection
reedsConnObj = reedsSheppConnection(Name,Value)

Description
reedsConnObj = reedsSheppConnection creates an object using default property
values.
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reedsConnObj = reedsSheppConnection(Name,Value) specifies property values
using name-value pairs. To set multiple properties, specify multiple name-value pairs.

Properties
MinTurningRadius — Minimum turning radius
1 (default) | positive scalar in meters

Minimum turning radius for the vehicle, specified as a positive scalar in meters. The
minimum turning radius is for the smallest circle the vehicle can make with maximum
steer in a single direction.
Data Types: double

DisabledPathTypes — Path types to disable
{} (default) | vector of string scalars | cell array of character vectors

Path types to disable, specified as a vector of string scalars or cell array of character
vectors.

Motion Type Description
"Sp","Sn" Straight (p = forward, n = reverse)
"Lp","Ln" Left turn at the maximum steering angle of

the vehicle (p = forward, n = reverse)
"Rp","Rn" Right turn at the maximum steering angle

of the vehicle (p = forward, n = reverse)
"N" No motion

If a path segment has fewer than five motion types, the remaining elements are "N" (no
motion).

To see all available path types, see the AllPathTypes property.
Example: ["LpSnLp","LnSnRpSn","LnSnRpSnLp"]
Data Types: cell

AllPathTypes — All possible path types
cell array of character vectors
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This property is read-only.

All possible path types, specified as a cell array of character vectors. This property lists
all types. To disable certain types, specify types from this list in DisabledPathTypes.

For Reeds-Shepp connections, there are 44 possible combinations of motion types.
Data Types: cell

ForwardCost — Cost multiplier to travel forward
1 (default) | positive numeric scalar

Cost multiple to travel forward, specified as a positive numeric scalar. Increase this
property to penalize forward motion.
Data Types: double

ReverseCost — Cost multiplier to travel in reverse
1 (default) | positive numeric scalar

Cost multiple to travel in reverse, specified as a positive numeric scalar. Increase this
property to penalize reverse motion.
Data Types: double

Object Functions
connect Connect poses for given connection type

Examples

Connect Poses Using ReedsShepp Connection Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

2 Classes — Alphabetical List

2-916



Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})

Modify Connection Types for Reeds-Shepp Path

Create a reedsSheppConnection object.
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reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path. Notice the direction of the turns.

show(pathSegObj{1})
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pathSegObj{1}.MotionTypes

ans = 1x5 cell array
    {'L'}    {'R'}    {'L'}    {'N'}    {'N'}

pathSegObj{1}.MotionDirections

ans = 1×5

     1    -1     1     1     1

Disable this specific motion sequence in a new connection object. Reduce the
MinTurningRadius if the robot is more maneuverable. Increase the reverse cost to
reduce the likelihood of reverse directions being used. Connect the poses again to get a
different path.

reedsConnObj = reedsSheppConnection('DisabledPathTypes',{'LpRnLp'});
reedsConnObj.MinTurningRadius = 0.5;
reedsConnObj.ReverseCost = 5;

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);
pathSegObj{1}.MotionTypes

ans = 1x5 cell array
    {'L'}    {'S'}    {'L'}    {'N'}    {'N'}

show(pathSegObj{1})
xlim([0 1.5])
ylim([0 1.5])
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
dubinsConnection | dubinsPathSegment | reedsSheppPathSegment

Functions
connect | interpolate | show

Introduced in R2019b
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reedsSheppPathSegment
Reeds-Shepp path segment connecting two poses

Description
The reedSheppPathSegment object holds information for a Reeds-Shepp path segment
to connect between poses. A Reeds-Shepp path segment connects two poses as a
sequence of five motion types. The motion options are:

• Straight
• Left turn at maximum steer
• Right turn at maximum steer
• No movement

Creation
To generate a reedSheppPathSegment object, use the connect function with a
reedsSheppConnection object:

reedsPathSegObj = connect(connectionObj,start,goal) connects the start and
goal poses using the specified connection type object.

To specifically define a path segment:

reedsPathSegObj =
reedsSheppPathSegment(connectionObj,start,goal,motionLengths,motionT
ypes) specifies the Reeds-Shepp connection type, the start and goal poses, and the
corresponding motion lengths and types. These values are set to the corresponding
properties in the object.

Properties
MinTurningRadius — Minimum turning radius of vehicle
positive scalar
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This property is read-only.

Minimum turning radius of the vehicle, specified as a positive scalar in meters. This value
corresponds to the radius of the turning circle at the maximum steering angle of the
vehicle.
Data Types: double

StartPose — Initial pose of vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle at the start of the path segment, specified as an [x, y, Θ] vector.
x and y are in meters. Θ is in radians.
Data Types: double

GoalPose — Goal pose of vehicle
[x, y, Θ] vector

This property is read-only.

Goal pose of the vehicle at the end of the path segment, specified as an [x, y, Θ] vector. x
and y are in meters. Θ is in radians.
Data Types: double

MotionLengths — Length of each motion
five-element numeric vector

This property is read-only.

Length of each motion in the path segment, specified as a five-element numeric vector in
meters. Each motion length corresponds to a motion type specified in MotionTypes.
Data Types: double

MotionTypes — Type of each motion
five-element string cell array

This property is read-only.

Type of each motion in the path segment, specified as a five-element string cell array.
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Motion Type Description
"S" Straight (forward, p or reverse, n)
"L" Left turn at the maximum steering angle of

the vehicle (forward, p or reverse, n)
"R" Right turn at the maximum steering angle

of the vehicle (forward, p or reverse, n)
"N" No motion

If a path segment has fewer than five motion types, the remaining elements are "N" (no
motion).
Example: {"L","S","R","L","R"}
Data Types: cell

MotionDirections — Direction of each motion
five-element vector of 1s (forward motion) and –1s (reverse motion)

This property is read-only.

Direction of each motion in the path segment, specified as a five-element vector of 1s
(forward motion) and –1s (reverse motion). Each motion direction corresponds to a
motion length specified in MotionLengths and a motion type specified in MotionTypes.

When no motion occurs, that is, when a MotionTypes value is "N", then the
corresponding MotionDirections element is 1.
Example: [-1 1 -1 1 1]
Data Types: double

Length — Length of path segment
positive scalar

This property is read-only.

Length of the path segment, specified as a positive scalar in meters. This length is just a
sum of the elements in MotionLengths.
Data Types: double
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Object Functions
interpolate Interpolate poses along path segment
show Visualize path segment

Examples

Connect Poses Using ReedsShepp Connection Path

Create a reedsSheppConnection object.

reedsConnObj = reedsSheppConnection;

Define start and goal poses as [x y theta] vectors.

startPose = [0 0 0];
goalPose = [1 1 pi];

Calculate a valid path segment to connect the poses.

[pathSegObj,pathCosts] = connect(reedsConnObj,startPose,goalPose);

Show the generated path.

show(pathSegObj{1})
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
dubinsConnection | dubinsPathSegment | reedsSheppConnection

Functions
connect | interpolate | show

Introduced in R2019b
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resamplingPolicyPF
Create resampling policy object with resampling settings

Description
The resamplingPolicyPF object stores settings for when resampling should occur
when using a particle filter for state estimation. The object contains the method that
triggers resampling and the relevant threshold for this resampling. Use this object as the
ResamplingPolicy property of the stateEstimatorPF object.

Creation

Syntax
policy = resamplingPolicyPF

Description
policy = resamplingPolicyPF creates a navParticleResamplingPolicy object
which contains properties to be modified to control when resampling should be triggered.
Use this object as the ResamplingPolicy property of the stateEstimatorPF object.

Properties
TriggerMethod — Method for determining if resampling should occur
'ratio' (default) | character vector

Method for determining if resampling should occur, specified as a character vector.
Possible choices are 'ratio' and 'interval'. The 'interval' method triggers
resampling at regular intervals of operating the particle filter. The 'ratio' method
triggers resampling based on the ratio of effective total particles.
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SamplingInterval — Fixed interval between resampling
1 (default) | scalar

Fixed interval between resampling, specified as a scalar. This interval determines during
which correction steps the resampling is executed. For example, a value of 2 means the
resampling is executed every second correction step. A value of inf means that
resampling is never executed.

This property only applies with the TriggerMethod is set to 'interval'.

MinEffectiveParticleRatio — Minimum desired ratio of effective to total
particles
0.5 (default) | scalar

Minimum desired ratio of effective to total particles, specified as a scalar. The effective
number of particles is a measure of how well the current set of particles approximates the
posterior distribution. A lower effective particle ratio means less particles are
contributing to the estimation and resampling might be required. If the ratio of effective
particles to total particles falls below the MinEffectiveParticleRatio, a resampling
step is triggered.

See Also
correct | stateEstimatorPF

Introduced in R2019b
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stateEstimatorPF
Create particle filter state estimator

Description
The stateEstimatorPF object is a recursive, Bayesian state estimator that uses discrete
particles to approximate the posterior distribution of the estimated state.

The particle filter algorithm computes the state estimate recursively and involves two
steps: prediction and correction. The prediction step uses the previous state to predict
the current state based on a given system model. The correction step uses the current
sensor measurement to correct the state estimate. The algorithm periodically
redistributes, or resamples, the particles in the state space to match the posterior
distribution of the estimated state.

The estimated state consists of state variables. Each particle represents a discrete state
hypothesis of these state variables. The set of all particles is used to help determine the
final state estimate.

You can apply the particle filter to arbitrary nonlinear system models. Process and
measurement noise can follow arbitrary non-Gaussian distributions.

For more information on the particle filter workflow and setting specific parameters, see:

• “Particle Filter Workflow”
• “Particle Filter Parameters”

Creation

Syntax
pf = stateEstimatorPF
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Description
pf = stateEstimatorPF creates an object that enables the state estimation for a
simple system with three state variables. Use the initialize method to initialize the
particles with a known mean and covariance or uniformly distributed particles within
defined bounds. To customize the particle filter’s system and measurement models,
modify the StateTransitionFcn and MeasurementLikelihoodFcn properties.

After you create the object, use initialize to initialize the NumStateVariables and
NumParticles properties. The initialize function sets these two properties based on
your inputs.

Properties
NumStateVariables — Number of state variables
3 (default) | scalar

This property is read-only.

Number of state variables, specified as a scalar. This property is set based on the inputs
to the initialize method. The number of states is implicit based on the specified
matrices for initial state and covariance.

NumParticles — Number of particles used in the filter
1000 (default) | scalar

This property is read-only.

Number of particles using in the filter, specified as a scalar. You can specify this property
only by calling the initialize method.

StateTransitionFcn — Callback function for determining the state transition
between particle filter steps
function handle

Callback function for determining the state transition between particle filter steps,
specified as a function handle. The state transition function evolves the system state for
each particle. The function signature is:

function predictParticles = stateTransitionFcn(pf,prevParticles,varargin)
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The callback function accepts at least two input arguments: the stateEstimatorPF
object, pf, and the particles at the previous time step, prevParticles. These specified
particles are the predictParticles returned from the previous call of the object.
predictParticles and prevParticles are the same size: NumParticles-by-
NumStateVariables.

You can also use varargin to pass in a variable number of arguments from the predict
function. When you call:

predict(pf,arg1,arg2)

MATLAB essentially calls stateTranstionFcn as:

stateTransitionFcn(pf,prevParticles,arg1,arg2)

MeasurementLikelihoodFcn — Callback function calculating the likelihood of
sensor measurements
function handle

Callback function calculating the likelihood of sensor measurements, specified as a
function handle. Once a sensor measurement is available, this callback function calculates
the likelihood that the measurement is consistent with the state hypothesis of each
particle. You must implement this function based on your measurement model. The
function signature is:

function likelihood = measurementLikelihoodFcn(PF,predictParticles,measurement,varargin)

The callback function accepts at least three input arguments:

1 pf – The associated stateEstimatorPF object
2 predictParticles – The particles that represent the predicted system state at the

current time step as an array of size NumParticles-by-NumStateVariables
3 measurement – The state measurement at the current time step

You can also use varargin to pass in a variable number of arguments. These arguments
are passed by the correct function. When you call:

correct(pf,measurement,arg1,arg2)

MATLAB essentially calls measurementLikelihoodFcn as:

measurementLikelihoodFcn(pf,predictParticles,measurement,arg1,arg2)
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The callback needs to return exactly one output, likelihood, which is the likelihood of
the given measurement for each particle state hypothesis.

IsStateVariableCircular — Indicator if state variables have a circular
distribution
[0 0 0] (default) | logical array

Indicator if state variables have a circular distribution, specified as a logical array.
Circular (or angular) distributions use a probability density function with a range of [-
pi,pi]. If the object has multiple state variables, then IsStateVariableCircular is a
row vector. Each vector element indicates if the associated state variable is circular. If the
object has only one state variable, then IsStateVariableCircular is a scalar.

ResamplingPolicy — Policy settings that determine when to trigger resampling
object

Policy settings that determine when to trigger resampling, specified as an object. You can
trigger resampling either at fixed intervals, or you can trigger it dynamically, based on the
number of effective particles. See resamplingPolicyPF for more information.

ResamplingMethod — Method used for particle resampling
'multinomial' (default) | 'residual' | 'stratified' | 'systematic'

Method used for particle resampling, specified as 'multinomial', 'residual',
'stratified', and 'systematic'.

StateEstimationMethod — Method used for state estimation
'mean' (default) | 'maxweight'

Method used for state estimation, specified as 'mean' and 'maxweight'.

Particles — Array of particle values
NumParticles-by-NumStateVariables matrix

Array of particle values, specified as a NumParticles-by-NumStateVariables matrix.
Each row corresponds to the state hypothesis of a single particle.

Weights — Particle weights
NumParticles-by-1 vector

Particle weights, specified as a NumParticles-by-1 vector. Each weight is associated
with the particle in the same row in the Particles property.
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State — Best state estimate
vector

This property is read-only.

Best state estimate, returned as a vector with length NumStateVariables. The estimate
is extracted based on the StateEstimationMethod property.

State Covariance — Corrected system covariance
N-by-N matrix | []

This property is read-only.

Corrected system variance, returned as an N-by-N matrix, where N is equal to the
NumStateVariables property. The corrected state is calculated based on the
StateEstimationMethod property and the MeasurementLikelihoodFcn. If you
specify a state estimate method that does not support covariance, then the property is set
to [].

Object Functions
initialize Initialize the state of the particle filter
getStateEstimate Extract best state estimate and covariance from particles
predict Predict state of robot in next time step
correct Adjust state estimate based on sensor measurement

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for
state estimation. The particle filter gives a predicted state estimate based on the return
value of StateTransitionFcn. It then corrects the state based on a given measurement
and the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF
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pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202
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Estimate Robot Position in a Loop Using Particle Filter

Use the stateEstimatorPF object to track a robot as it moves in a 2-D space. The
measured position has random noise added. Using predict and correct, track the
robot based on the measurement and on an assumed motion model.

Initialize the particle filter and specify the default state transition function, the
measurement likelihood function, and the resampling policy.

pf = stateEstimatorPF;
pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Sample 1000 particles with an initial position of [0 0] and unit covariance.

initialize(pf,1000,[0 0],eye(2));

Prior to estimation, define a sine wave path for the dot to follow. Create an array to store
the predicted and estimated position. Define the amplitude of noise.

t = 0:0.1:4*pi;
dot = [t; sin(t)]';
robotPred = zeros(length(t),2);
robotCorrected = zeros(length(t),2);
noise = 0.1;

Begin the loop for predicting and correcting the estimated position based on
measurements. The resampling of particles occurs based on theResamplingPolicy
property. The robot moves based on a sine wave function with random noise added to the
measurement.

for i = 1:length(t)
    % Predict next position. Resample particles if necessary.
    [robotPred(i,:),robotCov] = predict(pf);
    % Generate dot measurement with random noise. This is
    % equivalent to the observation step.
    measurement(i,:) = dot(i,:) + noise*(rand([1 2])-noise/2);
    % Correct position based on the given measurement to get best estimation.
    % Actual dot position is not used. Store corrected position in data array.
    [robotCorrected(i,:),robotCov] = correct(pf,measurement(i,:));
end

Plot the actual path versus the estimated position. Actual results may vary due to the
randomness of particle distributions.
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plot(dot(:,1),dot(:,2),robotCorrected(:,1),robotCorrected(:,2),'or')
xlim([0 t(end)])
ylim([-1 1])
legend('Actual position','Estimated position')
grid on

The figure shows how close the estimate state matches the actual position of the robot.
Try tuning the number of particles or specifying a different initial position and covariance
to see how it affects tracking over time.

 stateEstimatorPF

2-937



Compatibility Considerations

stateEstimatorPF was renamed
Behavior change in future release

The stateEstimatorPF object was renamed from robotics.ParticleFilter. Use
stateEstimatorPF for all object creation.

References
[1] Arulampalam, M.S., S. Maskell, N. Gordon, and T. Clapp. "A Tutorial on Particle Filters

for Online Nonlinear/Non-Gaussian Bayesian Tracking." IEEE Transactions on
Signal Processing. Vol. 50, No. 2, Feb 2002, pp. 174-188.

[2] Chen, Z. "Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond."
Statistics. Vol. 182, No. 1, 2003, pp. 1-69.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
correct | getStateEstimate | initialize | predict | resamplingPolicyPF

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a
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copy
Create copy of particle filter

Syntax
b = copy(a)

Description
b = copy(a) copies each element in the array of handles, a, to the new array of
handles, b.

The copy method does not copy dependent properties. MATLAB does not call copy
recursively on any handles contained in property values. MATLAB also does not call the
class constructor or property-set methods during the copy operation.

Input Arguments
a — Object array
handle

Object array, specified as a handle.

Output Arguments
b — Object array containing copies of the objects in a
handle

Object array containing copies of the object in a, specified as a handle.

b has the same number of elements and is the same size and class of a. b is the same
class as a. If a is empty, b is also empty. If a is heterogeneous, b is also heterogeneous. If
a contains deleted handles, then copy creates deleted handles of the same class in b.
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Dynamic properties and listeners associated with objects in a are not copied to objects in
b.

See Also
correct | getStateEstimate | initialize | predict | resamplingPolicyPF |
stateEstimatorPF

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a
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correct
Adjust state estimate based on sensor measurement

Syntax
[stateCorr,stateCov] = correct(pf,measurement)
[stateCorr,stateCov] = correct(pf,measurement,varargin)

Description
[stateCorr,stateCov] = correct(pf,measurement) calculates the corrected
system state and its associated uncertainty covariance based on a sensor measurement
at the current time step. correct uses the MeasurementLikelihoodFcn property from
the particle filter object, pf, as a function to calculate the likelihood of the sensor
measurement for each particle. The two inputs to the MeasurementLikelihoodFcn
function are:

1 pf – The stateEstimatorPF object, which contains the particles of the current
iteration

2 measurement – The sensor measurements used to correct the state estimate

The MeasurementLikelihoodFcn function then extracts the best state estimate and
covariance based on the setting in the StateEstimationMethod property.

[stateCorr,stateCov] = correct(pf,measurement,varargin) passes all
additional arguments in varargin to the underlying MeasurementLikelihoodFcn
after the first three required inputs.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for
state estimation. The particle filter gives a predicted state estimate based on the return
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value of StateTransitionFcn. It then corrects the state based on a given measurement
and the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3
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    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more
information.

measurement — Sensor measurements
array

Sensor measurements, specified as an array. This input is passed directly into the
MeasurementLikelihoodFcn property of pf. It is used to calculate the likelihood of the
sensor measurement for each particle.

varargin — Variable-length input argument list
comma-separated list

Variable-length input argument list, specified as a comma-separated list. This input is
passed directly into the MeasurementLikelihoodFcn property of pf. It is used to
calculate the likelihood of the sensor measurement for each particle. When you call:

correct(pf,measurement,arg1,arg2)

MATLAB essentially calls measurementLikelihoodFcn as:

measurementLikelihoodFcn(pf,measurement,arg1,arg2)

Output Arguments
stateCorr — Corrected system state
vector with length NumStateVariables

Corrected system state, returned as a row vector with length NumStateVariables. The
corrected state is calculated based on the StateEstimationMethod algorithm and the
MeasurementLikelihoodFcn.
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stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you
specify a state estimate method that does not support covariance, then the function
returns stateCov as [].

See Also
correct | getStateEstimate | initialize | predict | resamplingPolicyPF |
stateEstimatorPF

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a
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getStateEstimate
Extract best state estimate and covariance from particles

Syntax
stateEst = getStateEstimate(pf)
[stateEst,stateCov] = getStateEstimate(pf)

Description
stateEst = getStateEstimate(pf) returns the best state estimate based on the
current set of particles. The estimate is extracted based on the
StateEstimationMethod property from the stateEstimatorPF object, pf.

[stateEst,stateCov] = getStateEstimate(pf) also returns the covariance
around the state estimate. The covariance is a measure of the uncertainty of the state
estimate. Not all state estimate methods support covariance output. In this case,
getStateEstimate returns stateCov as [].

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for
state estimation. The particle filter gives a predicted state estimate based on the return
value of StateTransitionFcn. It then corrects the state based on a given measurement
and the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:
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           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202
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Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more
information.

Output Arguments
stateEst — Best state estimate
vector

Best state estimate, returned as a row vector with length NumStateVariables. The
estimate is extracted based on the StateEstimationMethod algorithm specified in pf.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you
specify a state estimate method that does not support covariance, then the function
returns stateCov as [].

See Also
correct | getStateEstimate | initialize | predict | resamplingPolicyPF |
stateEstimatorPF

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a
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initialize
Initialize the state of the particle filter

Syntax
initialize(pf,numParticles,mean,covariance)
initialize(pf,numParticles,stateBounds)
initialize( ___ ,Name,Value)

Description
initialize(pf,numParticles,mean,covariance) initializes the particle filter
object, pf, with a specified number of particles, numParticles. The initial states of the
particles in the state space are determined by sampling from the multivariate normal
distribution with the specified mean and covariance.

initialize(pf,numParticles,stateBounds) determines the initial location of the
particles by sample from the multivariate uniform distribution within the specified
stateBounds.

initialize( ___ ,Name,Value) initializes the particles with additional options
specified by one or more Name,Value pair arguments.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for
state estimation. The particle filter gives a predicted state estimate based on the return
value of StateTransitionFcn. It then corrects the state based on a given measurement
and the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.
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pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202
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Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more
information.

numParticles — Number of particles used in the filter
scalar

Number of particles used in the filter, specified as a scalar.

mean — Mean of particle distribution
vector

Mean of particle distribution, specified as a vector. The NumStateVariables property of
pf is set based on the length of this vector.

covariance — Covariance of particle distribution
N-by-N matrix

Covariance of particle distribution, specified as an N-by-N matrix, where N is the value of
NumStateVariables property from pf.

stateBounds — Bounds of state variables
n-by-2 matrix

Bounds of state variables, specified as an n-by-2 matrix. The NumStateVariables
property of pf is set based on the value of n. Each row corresponds to the lower and
upper limit of the corresponding state variable.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: "CircularVariables",[0 0 1]
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CircularVariables — Circular variables
logical vector

Circular variables, specified as a logical vector. Each state variable that uses circular or
angular coordinates is indicated with a 1. The length of the vector is equal to the
NumStateVariables property of pf.

See Also
correct | getStateEstimate | initialize | predict | resamplingPolicyPF |
stateEstimatorPF

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a
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predict
Predict state of robot in next time step

Syntax
[statePred,stateCov] = predict(pf)
[statePred,stateCov] = predict(pf,varargin)

Description
[statePred,stateCov] = predict(pf) calculates the predicted system state and its
associated uncertainty covariance. predict uses the StateTransitionFcn property of
stateEstimatorPF object, pf, to evolve the state of all particles. It then extracts the
best state estimate and covariance based on the setting in the StateEstimationMethod
property.

[statePred,stateCov] = predict(pf,varargin) passes all additional arguments
specified in varargin to the underlying StateTransitionFcn property of pf. The first
input to StateTransitionFcn is the set of particles from the previous time step,
followed by all arguments in varargin.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for
state estimation. The particle filter gives a predicted state estimate based on the return
value of StateTransitionFcn. It then corrects the state based on a given measurement
and the return value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF
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pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000
particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202
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Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more
information.

varargin — Variable-length input argument list
comma-separated list

Variable-length input argument list, specified as a comma-separated list. This input is
passed directly into the StateTransitionFcn property of pf to evolve the system state
for each particle. When you call:

predict(pf,arg1,arg2)

MATLAB essentially calls the stateTranstionFcn as:

stateTransitionFcn(pf,prevParticles,arg1,arg2)

Output Arguments
statePred — Predicted system state
vector

Predicted system state, returned as a vector with length NumStateVariables. The
predicted state is calculated based on the StateEstimationMethod algorithm.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you
specify a state estimate method that does not support covariance, then the function
returns stateCov as [].
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See Also
correct | getStateEstimate | initialize | predict | resamplingPolicyPF |
stateEstimatorPF

Topics
“Track a Car-Like Robot Using Particle Filter” (Robotics System Toolbox)
“Particle Filter Parameters”
“Particle Filter Workflow”

Introduced in R2016a
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stateSpaceSE2
SE(2) state space

Description
The stateSpaceSE2 object stores parameters and states in the SE(2) state space, which
is composed of state vectors represented by [x, y, θ]. x and y are Cartesian coordinates,
and θ is the orientation angle. The object uses Euclidean distance to calculate distance
and uses linear interpolation to calculate translation and rotation of the state.

Creation

Syntax
space = stateSpaceSE2
sapce = stateSpaceSE2(bounds)

Description
space = stateSpaceSE2 creates an SE(2) state space object with default state bounds
for x, y, and θ.

sapce = stateSpaceSE2(bounds) specifies the bounds for x, y, and θ. The state
values beyond the bounds are truncated to the bounds. The input, bounds, allows you to
set the value of the StateBounds property.

Properties
Name — Name of state space
'SE2' (default) | string

Name of state space, specified as a string.
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NumStateVariables — Dimension of the state space
3 (default) | positive integer

This property is read-only.

Dimension of the state space, specified as a positive integer.

StateBounds — Bounds of state variables
[-100 100; -100 100; -3.1416 3.1416] (default) | 3-by-2 real-valued matrix

Bounds of state variables, specified as a 3-by-2 real-valued matrix.

• The first row specifies the lower and upper bounds of the x state in meters.
• The second row specifies the lower and upper bounds of the y state in meters.
• The third row specifies the lower and upper bounds of the θ state in radians.

Data Types: double

WeightXY — Weight applied to x and y distance calculation
1 (default) | nonnegative real scalar

Weight applied to x and y distance calculation, specified as a nonnegative real scalar.

In the object, the distance calculated as:

d = wxy(dx
2 + dy

2) + wθdθ
2

wxy is weight applied to x and y coordinates, and wθ is the weight applied to the θ
coordinate. dx, dy, and dθ are the distances in the x, y, and θ direction, respectively.
Data Types: double

WeightTheta — Weight applied to theta distance calculation
0.1 (default) | nonnegative real scalar

Weight applied to θ distance calculation, specified as a nonnegative real scalar.

In the object, the distance calculated as:

d = wxy(dx
2 + dy

2) + wθdθ
2
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wxy is weight applied to x and y coordinates, and wθ is the weight applied to the θ
coordinate. dx, dy, and dθ are the distances in the x, y, and θ direction, respectively.
Data Types: double

Object Functions
copy Create copy of state space object
distance Distance between two states
enforceStateBounds Ensure state lie within state bounds
interpolate Interpolate between states
sampleGaussian Sample state using Gaussian distribution
sampleUniform Sample state using uniform distribution

Examples

Plan Path Between Two SE(2) States

Create an SE(2) state space.

ss = stateSpaceSE2;

Create an occupancyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupancy map from an example map and and set map resolution as 10 cells/
meter.

load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits; [-pi pi]];
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Create the path planner and increase maximum connection distance.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;

Set the start and goal states.

start = [0.5,0.5,0];
goal = [2.5,0.2,0];

Plan a path with default settings.

rng(100,'twister'); % for repeatable result
[pthObj,solnInfo] = planner.plan(start,goal);

Visualize the results.

map.show; hold on;
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-'); % tree expansion
plot(pthObj.States(:,1), pthObj.States(:,2),'r-','LineWidth',2) % draw path
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateSpaceDubins | stateSpaceReedsShepp
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Introduced in R2019b
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stateSpaceDubins
State space for Dubins vehicles

Description
The stateSpaceDubins object stores parameters and states in the Dubins state space,
which is composed of state vectors represented by [x, y, θ]. x and y are Cartesian
coordinates, and θ is the orientation angle. The Dubins state space has a lower limit on
the turning radius (specified by the MinTurningRadius property in the object) for
navigating between states and uses the shortest feasible curve to connect states.

Creation

Syntax
space = stateSpaceDubins
sapce = stateSpaceDubins(bounds)

Description
space = stateSpaceDubins creates a Dubins state space object with default state
bounds for x, y, and θ.

sapce = stateSpaceDubins(bounds) specifies the bounds for x, y, and θ. The state
values beyond the bounds are truncated to the bounds. The input, bounds, allows you to
set the value of the StateBounds property.

Properties
Name — Name of state space
'SE2 Dubins' (default) | string

Name of state space, specified as a string.
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NumStateVariables — Dimension of the state space
3 (default) | positive integer

This property is read-only.

Dimension of the state space, specified as a positive integer.

StateBounds — Bounds of state variables
[-100 100; -100 100; -3.1416 3.1416] (default) | 3-by-2 real-valued matrix

Bounds of state variables, specified as a 3-by-2 real-valued matrix.

• The first row specifies the lower and upper bounds for the x state in meters.
• The second row specifies the lower and upper bounds for the y state in meters.
• The third row specifies the lower and upper bounds for the θ state in radians.

Data Types: double

MinTurningRadius — Minimum turning radius
1 (default) | positive scalar

Minimum turning radius in meters, specified as a positive scalar. The minimum turning
radius is for the smallest circle the vehicle can make with maximum steer in a single
direction.

Object Functions
copy Create copy of state space object
distance Distance between two states
enforceStateBounds Ensure state lie within state bounds
interpolate Interpolate between states
sampleGaussian Sample state using Gaussian distribution
sampleUniform Sample state using uniform distribution

Examples

Plan Path Between Two States in Dubins State Space

Create a Dubins state space and set the minimum turing readius to 0.2.
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ss = stateSpaceDubins;
ss.MinTurningRadius = 0.2;

Create an occupanyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupany map from an example map and and set map resolution as 10 cells/
meter.

load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits; [-pi pi]];

Create the path planner and increase max connection distance.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;

Set the start and goal states.

start = [0.5,0.5,0];
goal = [2.5,0.2,0];

Plan a path with default settings.

rng(100,'twister'); % repeatable result
[pthObj,solnInfo] = planner.plan(start,goal);

Visualize the results.

show(map);
hold on;
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-'); % tree expansion
plot(pthObj.States(:,1), pthObj.States(:,2),'r-','LineWidth',2) % draw path
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dubinsConnection | stateSpaceReedsShepp | stateSpaceSE2
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Introduced in R2019b
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stateSpaceReedsShepp
State space for Reeds-Shepp vehicles

Description
The stateSpaceReedsShepp object stores parameters and states in the ReedsShepp
state space, which is composed of state vectors represented by [x, y, θ]. x and y are
Cartesian coordinates, and θ is the orientation angle. The Reeds-Shepp state space has a
lower limit on the turning radius (specified by the MinTurningRadius property in the
object) and forward and reverse costs (specified by the ForwardCost and ReverseCost
properties in the object) for navigating between states.

Creation

Syntax
space = stateSpaceReedsShepp
sapce = stateSpaceReedsShepp(bounds)

Description
space = stateSpaceReedsShepp creates a Reeds-Shepp state space object with
default state bounds for x, y, and θ.

sapce = stateSpaceReedsShepp(bounds) specifies the bounds for x, y, and θ. The
state values beyond the bounds are truncated to the bounds. The input, bounds, sets the
value of the StateBounds property.

Properties
Name — Name of state space
'SE2 Dubins' (default) | string
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Name of state space, specified as a string.

NumStateVariables — Dimension of the state space
3 (default) | positive integer

This property is read-only.

Dimension of the state space, specified as a positive integer.

StateBounds — Bounds of state variables
[-100 100; -100 100; -3.1416 3.1416] (default) | 3-by-2 real-valued matrix

Bounds of state variables, specified as a 3-by-2 real-valued matrix.

• The first row specifies the lower and upper bounds for the x state in meters.
• The second row specifies the lower and upper bounds for the y state in meters.
• The third row specifies the lower and upper bounds for the θ state in radians.

Data Types: double

MinTurningRadius — Minimum turning radius
1 (default) | positive scalar

Minimum turning radius in meters, specified as a positive scalar. The minimum turning
radius is for the smallest circle the vehicle can make with maximum steer in a single
direction.

ForwardCost — Cost multiplier for forward motion
1 (default) | positive scalar

Cost multiplier for forward motion, specified as a positive scalar. Increase the cost to
penalize forward motion.

ReverseCost — Cost multiplier for reverse motion
1 (default) | positive scalar

Cost multiplier for reverse motion, specified as a positive scalar. Increase the cost to
penalize reverse motion.
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Object Functions
copy Create copy of state space object
distance Distance between two states
enforceStateBounds Ensure state lie within state bounds
interpolate Interpolate between states
sampleGaussian Sample state using Gaussian distribution
sampleUniform Sample state using uniform distribution

Examples

Plan Path Between Two States in ReedsShepp State Space

Create a ReedsShepp state space.

ss = stateSpaceReedsShepp;

Create an occupanyMap-based state validator using the created state space.

sv = validatorOccupancyMap(ss);

Create an occupany map from an example map and and set map resolution as 10 cells/
meter.

load exampleMaps
map = occupancyMap(simpleMap,10);
sv.Map = map;

Set validation distance for the validator.

sv.ValidationDistance = 0.01;

Update state space bounds to be the same as map limits.

ss.StateBounds = [map.XWorldLimits;map.YWorldLimits; [-pi pi]];

Create the path planner and increase max connection distance.

planner = plannerRRT(ss,sv);
planner.MaxConnectionDistance = 0.3;

Set the start and goal states.
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start = [0.5,0.5,0];
goal = [2.5,0.2,0];

Plan a path with default settings.

rng(100,'twister'); % repeatable result
[pthObj,solnInfo] = planner.plan(start,goal);

Visualize the results.

show(map); 
hold on;
plot(solnInfo.TreeData(:,1),solnInfo.TreeData(:,2),'.-'); % tree expansion
plot(pthObj.States(:,1), pthObj.States(:,2),'r-','LineWidth',2) % draw path

2 Classes — Alphabetical List

2-970



Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
reedsSheppConnection | stateSpaceDubins | stateSpaceSE2

Introduced in R2019b
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distance
Distance between two states

Syntax
dist = distance(space,states1,states2)

Description
dist = distance(space,states1,states2) returns the distance between states1
and states2 in the state space specified by space.

Input Arguments
space — State space object
sateSpaceSE2 object | stateSpaceDubins object | stateSpaceReedsShepp object

State space object, specified as a stateSpaceSE2, a stateSpaceDubins, or a
stateSpaceReedsShepp object.
Data Types: object

states1 — States for distance calculation
M-by-3 real-valued matrix

States for distance calculation, specified as an M-by-3 real-valued matrix. Each row of the
matrix corresponds to one incidence of state in the state space. The number of rows in
states1 must be exactly the same as that of states2.
Data Types: single | double

states2 — States for distance calculation
M-by-3 real-valued matrix
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States for distance calculation, specified as an M-by-3 real-valued matrix. Each row of the
matrix corresponds to one incidence of state in the state space. The number of rows in
states2 must be exactly the same as that of states1.
Data Types: single | double

Output Arguments
dist — Distance between states
M-by-1 real vector

Distance between states, returned as an M-by-1 real vector. The dimension M depends on
the dimension of the input.

See Also
stateSpaceDubins | stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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interpolate
Interpolate between states

Syntax
interpStates = interpolate(space,state1,state2,ratio)

Description
interpStates = interpolate(space,state1,state2,ratio) returns the states
interpolated from state1 and state2 based on the specified ratio.

Examples

Interpolate Between States in SE2

Create an SE2 state space.

space = stateSpaceSE2

space = 
  stateSpaceSE2 with properties:

                 Name: 'SE2'
          StateBounds: [3x2 double]
    NumStateVariables: 3
             WeightXY: 1
          WeightTheta: 0.1000

 

Interpolate half-way between 2 states.

state = interpolate(space, [2 10 -pi], [0 -2.5 -pi/4], 0.5)
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state = 1×3

    1.0000    3.7500   -1.9635

 

Interpolate multiple points with a fixed interval.

states = interpolate(space, [2 10 -pi], [0 -2.5 -pi/4], [0:0.02:1])

states = 51×3

    2.0000   10.0000   -3.1416
    1.9600    9.7500   -3.0945
    1.9200    9.5000   -3.0473
    1.8800    9.2500   -3.0002
    1.8400    9.0000   -2.9531
    1.8000    8.7500   -2.9060
    1.7600    8.5000   -2.8588
    1.7200    8.2500   -2.8117
    1.6800    8.0000   -2.7646
    1.6400    7.7500   -2.7175
      ⋮

Input Arguments
space — State space object
stateSpaceSE2 object | stateSpaceDubins object | stateSpaceReedsShepp object

State space object, specified as a stateSpaceSE2, a stateSpaceDubins, or a
stateSpaceReedsShepp object.
Data Types: object

state1 — Start state for interpolation
3-element real vector

Start state for interpolation, specified as a 3-element real vector.
Data Types: single | double
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state2 — End state for interpolation
3-element real vector

End state for interpolation, specified as a 3-element real vector.
Data Types: single | double

ratio — Interpolation ratio
scalar in [0,1] | N-by-1 array of scalars in [0,1]

Interpolation ratio, specified as a scalar in [0,1], or an N-by-1 array of scalars in [0,1] .
N is the number of interpolation points.
Data Types: single | double

Output Arguments
interpStates — Interpolated states
N-by-3 real-valued matrix

Interpolated states, returned as an N-by-3 real-valued matrix. N is the number of
interpolation points specified by the ratio input.
Data Types: single | double

See Also
stateSpaceDubins | stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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enforceStateBounds
Ensure state lie within state bounds

Syntax
boundedStates = enforceStateBounds(space,states)

Description
boundedStates = enforceStateBounds(space,states) reduces states to state
bounds specified in the StateBounds property of the space object.

Input Arguments
space — State space object
spaceSE2 object | spaceDubins object | spaceReedsShepp object

State space object, specified as a stateSpaceSE2, a stateSpaceDubins, or a
stateSpaceReedsShepp object.
Data Types: object

states — Unbounded states
M-by-3 real-valued matrix

Unbounded states, specified as an M-by-3 real-valued matrix. Each row of the matrix
corresponds to one incidence of state in the state space.
Data Types: single | double

Output Arguments
boundedStates — Bounded states
M-by-3 real-valued matrix
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Bounded states truncated to the StateBounds specified in the state space, returned as
an M-by-3 real-valued matrix. M is same as the dimension of the states input.
Data Types: single | double

See Also
stateSpaceDubins | stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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copy
Create copy of state space object

Syntax
space2 = copy(space1)

Description
space2 = copy(space1) creates a copy of the space object, space2, from the state
space object, space1.

Input Arguments
space1 — State space object
stateSpaceSE2 object | stateSpaceDubins object | stateSpaceReedsShepp object

State space object, specified as a stateSpaceSE2, a stateSpaceDubins, or a
stateSpaceReedsShepp object.
Data Types: object

Output Arguments
space2 — State space object
stateSpaceSE2 object | stateSpaceDubins object | stateSpaceReedsShepp object

State space object, returned as a stateSpaceSE2, a stateSpaceDubins, or a
stateSpaceReedsShepp object.
Data Types: object
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See Also
stateSpaceDubins | stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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sampleGaussian
Sample state using Gaussian distribution

Syntax
state = sampleGaussian(space,meanState,stdDev)
state = sampleGaussian(space,meanState,stdDev,numSamples)

Description
state = sampleGaussian(space,meanState,stdDev) returns a sample state of the
state space based on a Gaussian (normal) distribution with specified mean, meanState,
and standard deviation, stdDev.

state = sampleGaussian(space,meanState,stdDev,numSamples) returns a
number of state samples. The number is equal to numSamples.

Input Arguments
space — State space object
spaceSE2 object | spaceDubins object | spaceReedsShepp object

State space object, specified as a stateSpaceSE2, a stateSpaceDubins, or a
stateSpaceReedsShepp object.
Data Types: object

meanState — Mean state
3-element vector of real values

Mean state of the Gaussian distribution for sampling, specified as a 3-element vector of
real values.
Example: [5 5 pi/3]
Data Types: single | double
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stdDev — Standard deviation
3-element vector of nonnegative values

Standard deviation of the Gaussian distribution for sampling, specified as a 3-element
vector of nonnegative values.
Example: [0.1 0.1 pi/18]
Data Types: single | double

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer.
Data Types: single | double

Output Arguments
state — State samples
N-by-3 real-valued matrix

State samples, returned as an N-by-3 real-valued matrix. N is the number of samples.
Each row of the matrix corresponds to one incidence of state in the state space.
Data Types: single | double

See Also
stateSpaceDubins | stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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sampleUniform
Sample state using uniform distribution

Syntax
state = sampleUniform(space)
state = sampleUniform(space,numSamples)
state = sampleUniform(space,nearState,distVector,numSamples)

Description
state = sampleUniform(space)returns a sample state within the StateBounds
property of the space object using a uniform distribution.

state = sampleUniform(space,numSamples) returns a number of state samples.
The number is equal to numSamples.

state = sampleUniform(space,nearState,distVector,numSamples) returns
the state samples in a subregion defined by nearState and distVector. The center of
the subregion is the nearState. distVector defines the distance from the two
boundaries of the subregion to the center.

Input Arguments
space — State space object
spaceSE2 object | spaceDubins object | spaceReedsShepp object

State space object, specified as a stateSpaceSE2, a stateSpaceDubins, or a
stateSpaceReedsShepp object.
Data Types: object

numSamples — Number of samples
positive integer
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Number of samples, specified as a positive integer.
Data Types: single | double

nearState — Center of sampling region
3-element real vector

Center of the sampling region, specified as a 3-element real vector.
Data Types: single | double

distVector — Distance of sampling region boundary form the center
3-element nonnegative vector

Distance of sampling region boundary form the center, specified as a 3-element
nonnegative vector.
Data Types: single | double

Output Arguments
state — State samples
N-by-3 real-valued matrix

State samples, returned as an N-by-3 real-valued matrix. N is the number of samples.
Each row of the matrix corresponds to one incidence of state in the state space.
Data Types: single | double

See Also
stateSpaceDubins | stateSpaceReedsShepp | stateSpaceSE2

Introduced in R2019b
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trajectoryOptimalFrenet
Find optimal trajectory for reference path

Description
The trajectoryOptimalFrenet object generates an optimal, feasible, and collision-
free trajectory for the reference path.

The plan function computes an optimal trajectory between start and terminal states.
The function samples multiple trajectories for each pair of states and chooses a feasible
trajectory with the least cost.

Creation

Syntax
planner = trajectoryOptimalFrenet(refPath,validator)
planner = trajectoryOptimalFrenet(refPath,validator,Name,Value)

Description
planner = trajectoryOptimalFrenet(refPath,validator) creates a
trajectoryOptimalFrenet object with reference path, refPath, in the form of a n-
by-2 array of [x y] waypoints and a state validator, validator, specified as a
validatorOccupancyMap object.

planner = trajectoryOptimalFrenet(refPath,validator,Name,Value) sets
additional properties using one or more name-value pairs in any order.

Input Arguments
refPath — Reference path
n-by-2 matrix
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Reference path, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
waypoints.
Example: [100,100;400,400]
Data Types: double

validator — stateValidator object
validatorOccupancyMap object

stateValidator object, specified as an validatorOccupancyMap object.

Properties

Note For the 'Weights' and 'FeasibilityParameters' properties, you cannot
specify the entire structures at once. Instead, set their fields individually as name-value
pairs. For example,
trajectoryOptimalFrenet(refPath,validator,'Deviation',0) sets the
'Deviation' field of the structure 'Weights'.

Weights — Weights for all trajectory costs
structure

The weights for all trajectory costs, specified as a structure containing scalars for the cost
multipliers of the corresponding trajectory attributes. The total trajectory cost is a sum of
all attributes multiplied by their weights. The structure has the following fields.

Time — Weight for time cost
0 (default) | positive scalar

The cost function multiplies the weight by the total time taken to reach the terminal state.
Specify this value as the comma-separated pair of 'Time' and a positive scalar in
seconds.
Data Types: double

ArcLength — Weight for arc length cost
0 (default) | positive scalar
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The cost function multiplies the weight by the total length of the generated trajectories.
Specify this value as the comma-separated pair of 'ArcLength' and a positive scalar in
meters.
Data Types: double

LateralSmoothness — Weight for lateral jerk cost
0 (default) | positive scalar

The cost function multiplies the weight by the integral of lateral jerk squared. This value
determines the aggressiveness of the trajectory in the lateral direction (perpendicular to
the reference path). Specify this value as the comma-separated pair of
'LateralSmoothness' and a positive scalar. Increase the cost value to penalize lateral
jerk in the planned trajectory.
Data Types: double

LongitudinalSmoothness — Weight for longitudinal jerk cost
0 (default) | positive scalar

The cost function multiplies the weight by the integral of longitudinal jerk squared. This
value determines the aggressiveness of the trajectories in the longitudinal direction
(direction of the reference path). Specify this value as the comma-separated pair of
'LongitudinalSmoothness' and a positive scalar. Increase this cost value to penalize
large change in forward and backward acceleration.
Data Types: double

Deviation — Weight for deviation from reference path
1 (default) | positive scalar

The cost function multiplies the weight by the perpendicular distance from the reference
path at the end of the trajectory. Specify this value as the comma-separated pair of
'Deviation' and a positive scalar in meters.
Data Types: double

Data Types: struct

FeasibilityParameters — Structure containing feasibility parameters
structure

Feasibility parameters, specified as a structure containing scalar values to check the
validity of a trajectory. The structure has the following fields.
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MaxCurvature — Maximum curvature that vehicle can execute
0.1 (default) | positive real scalar

Maximum curvature that the vehicle can execute. Specify this value as the comma-
separated pair of 'MaxCurvature' and a positive real scalar in m-1. This value
determines the kinematic feasibility of the trajectory.
Data Types: double

MaxAcceleration — Maximum acceleration in direction of motion of vehicle
2.5 (default) | positive real scalar

Maximum acceleration in the direction of motion of the vehicle. Specify this value as the
comma-separated pair of 'MaxAcceleration' and a positive real scalar in m/s2.
Decrease this value to lower the limit on the acceleration of the vehicle in the forward or
reverse direction.
Data Types: double

Data Types: struct

TimeResolution — Trajectory discretization interval
0.1 (default) | positive real scalar

Time interval between discretized states of the trajectory. Specify this value as the
comma-separated pair of 'TimeResolution' and a positive real scalar in seconds. The
state validity and cost function are based on these discretized states.
Data Types: double

CostFunction — User-defined cost function
function handle

User-defined cost function, specified as a function handle. The function must accept a
matrix of n-by-7 states, TRAJSTATES, for each trajectory and return a cost value as a
scalar. The cost function signature is:

cost = CostFunction(TRAJSTATES)

The plan function returns the path with the lowest cost.
Data Types: function handle

TrajectoryList — List of all possible trajectories
[ ] (default) | structure
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This property is read-only.

The 'TrajectoryList' property, returned as a structure containing an array of all
trajectories and their corresponding parameters. The structure has the following fields:

• Trajectory
• Cost
• MaxAcceleration
• MaxCurvature
• Feasible — A four-element vector [velocity acceleration curvature

collision] indicating the validity of the path.

A value of 1 means that the trajectory is valid, 0 means invalid, and –1 means not
checked.

Data Types: struct

TerminalStates — Structure of all goal states
structure

A structure that contains a list of goal states relative to the reference path. These
parameters define the sampling behavior for generating alternative trajectory segments
between start and each goal state. The structure has the following fields.

Longitudinal — Lengths of the trajectory segment
30:15:90 (default) | vector

Lengths of the trajectory segment, specified as a vector in meters.
Data Types: double

Lateral — Array of deviations from reference path in perpendicular direction at
goal state
-2:1:2 (default) | vector

Array of deviations from reference path in perpendicular direction at goal state, specified
as a vector in meters.
Data Types: double

Speed — Velocity at goal state in direction of motion
10 (default) | positive scalar
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Velocity at the goal state in the direction of motion, specified as a scalar in m/s.
Data Types: double

Acceleration — Acceleration at goal state in direction of motion
0 (default) | positive scalar

Acceleration at the goal state in the direction of motion, specified as a scalar in m/s2.
Data Types: double

Time — Array of end-times for executing trajectory segment
7 (default) | positive vector

Array of end-times for executing the trajectory segment, specified as a positive vector in
seconds.
Data Types: double

Data Types: struct

Waypoints — Waypoints of reference path
[ ] (default) | n-by-2 matrix

Waypoints of reference path, specified as an n-by-2 matrix of [x y] pairs, where n is the
number of waypoints, which act as a reference for planning alternative trajectories
optimized by this planner.
Data Types: double

Object Functions
cart2frenet Convert Cartesian states to Frenet states
frenet2cart Convert Frenet states to Cartesian states
plan Plan optimal trajectory
show Visualize trajectories

Examples
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Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a
trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(700,700);
grid(296:305,150:175) = 1;
grid(286:295,300:325) = 1;
grid(306:315,300:325) = 1;
grid(296:305,450:475) = 1;
grid(286:295,600:625) = 1;
grid(306:315,600:625) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map to the state validator.

stateValidator.Map = map;

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [10,400;700,400];

Declare the cost function handle to prioritize left lane changes.

leftLaneChangeCost = @(states)((states(end,2) < refPath(end,2))*10);

Initialize the planner object with the reference path, the state validator, and the custom
cost function.

plannerObj = trajectoryOptimalFrenet(refPath,stateValidator,'CostFunction',leftLaneChangeCost);

Assign lateral deviation values.
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plannerObj.TerminalStates.Lateral = -10:10:10;

Trajectory Generation

Initialize the variables for the replanning loop.

previousDeviationValue = 0;
deviationValue = 0;
initState = zeros(1,6);

Replan until final waypoint is closest to the terminal state.

for j = 1:150
    
    % Deviation from the current reference path
    if initState(4) > 5
        deviationValue = 10;
    elseif initState(4) < -5
        deviationValue = -10;
    end
    
    % Move reference path to the current lane
    if previousDeviationValue ~= deviationValue
        % Shift the waypoints by the deviation value
        plannerObj.Waypoints = [plannerObj.Waypoints(:,1), plannerObj.Waypoints(:,2) + deviationValue];
        
        % Shift the terminal states such that they remain fixed in world frame
        plannerObj.TerminalStates.Lateral = plannerObj.TerminalStates.Lateral - deviationValue;
        
        % Store the deviation value
        previousDeviationValue = deviationValue;
        
        % Update initState variable with the new planner object
        initState = cart2frenet(plannerObj,trajectory(10,1:6));
    end
    
    % Generate a trajectory from initState
    trajectory = plan(plannerObj,initState);
    
    % Use 10th state of the current trajectory as a starting point for
    % replanning
    initState = cart2frenet(plannerObj,trajectory(10,1:6));
    
    % Visualize every 5th iteration
    if mod(j,5)==0
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        show(map)
        hold on;
        show(plannerObj,'TrajectoryColor','none');
        drawnow
    end
end

Limitations
• Self-intersections in the reference path can lead to unexpected behavior.
• The planner does not support reverse driving.
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• Initial orientation for planning should be within -pi/2 and pi/2 to the reference
path.

• Keep the number of TerminalStates in check for real-time applications since
computational complexity grows with it.

References
[1] Werling, Moritz, Julius Ziegler, Sören Kammel, and Sebastian Thrun. "Optimal

trajectory generation for dynamic street scenarios in a frenet frame." 2010 IEEE
International Conference on Robotics and Automation. 2010, pp. 987–993.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
plannerHybridAStar | validatorOccupancyMap

Introduced in R2019b
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cart2frenet
Convert Cartesian states to Frenet states

Syntax
cart2frenet(planner,cartesianStates)

Description
cart2frenet(planner,cartesianStates) converts a 6-element vector of Cartesian
states [x, y, theta, kappa, speed, acceleration] to a 6-element vector of
Frenet states [s, ds, dds, l, dl, ddl], where s is arc length from the first point in
reference path, and l is normal distance from the closest point at s on the reference path.

Examples

Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a
trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(700,700);
grid(296:305,150:175) = 1;
grid(286:295,300:325) = 1;
grid(306:315,300:325) = 1;
grid(296:305,450:475) = 1;
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grid(286:295,600:625) = 1;
grid(306:315,600:625) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map to the state validator.

stateValidator.Map = map;

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [10,400;700,400];

Declare the cost function handle to prioritize left lane changes.

leftLaneChangeCost = @(states)((states(end,2) < refPath(end,2))*10);

Initialize the planner object with the reference path, the state validator, and the custom
cost function.

plannerObj = trajectoryOptimalFrenet(refPath,stateValidator,'CostFunction',leftLaneChangeCost);

Assign lateral deviation values.

plannerObj.TerminalStates.Lateral = -10:10:10;

Trajectory Generation

Initialize the variables for the replanning loop.

previousDeviationValue = 0;
deviationValue = 0;
initState = zeros(1,6);

Replan until final waypoint is closest to the terminal state.

for j = 1:150
    
    % Deviation from the current reference path
    if initState(4) > 5
        deviationValue = 10;
    elseif initState(4) < -5
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        deviationValue = -10;
    end
    
    % Move reference path to the current lane
    if previousDeviationValue ~= deviationValue
        % Shift the waypoints by the deviation value
        plannerObj.Waypoints = [plannerObj.Waypoints(:,1), plannerObj.Waypoints(:,2) + deviationValue];
        
        % Shift the terminal states such that they remain fixed in world frame
        plannerObj.TerminalStates.Lateral = plannerObj.TerminalStates.Lateral - deviationValue;
        
        % Store the deviation value
        previousDeviationValue = deviationValue;
        
        % Update initState variable with the new planner object
        initState = cart2frenet(plannerObj,trajectory(10,1:6));
    end
    
    % Generate a trajectory from initState
    trajectory = plan(plannerObj,initState);
    
    % Use 10th state of the current trajectory as a starting point for
    % replanning
    initState = cart2frenet(plannerObj,trajectory(10,1:6));
    
    % Visualize every 5th iteration
    if mod(j,5)==0
        show(map)
        hold on;
        show(plannerObj,'TrajectoryColor','none');
        drawnow
    end
end
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Input Arguments
planner — Optimal trajectory planner in frenet space
trajectoryOptimalFrenet object

Optimal trajectory planner in frenet space, specified as a trajectoryOptimalFrenet
object.

cartesianStates — Vector of Cartesian states
six-element vector
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Vector of Cartesian states, specified as a 1-by-6 vector, [x, y, theta, kappa,
speed, acceleration]. x and y specifies the position in meters, theta specifies the
orientation angle in radians, kappa specifies the curvature in m-1, speed specifies the
velocity in m/s, and acceleration specify the acceleration in m/s2.
Example: [110 110 pi/4 0 0 0]
Data Types: double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
frenet2cart | trajectoryOptimalFrenet

Introduced in R2019b
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frenet2cart
Convert Frenet states to Cartesian states

Syntax
frenet2cart(planner,frenetStates)

Description
frenet2cart(planner,frenetStates) converts a 6-element vector of Frenet states
[s, ds, dds, l, dl, ddl], where s is arc length from the first point in reference
path, and l is normal distance from the closest point at s on the reference path to a 6-
element vector of Cartesian states [x, y, theta, kappa, speed, acceleration].

Input Arguments
planner — Optimal trajectory planner in frenet space
trajectoryOptimalFrenet object

Optimal trajectory planner in frenet space, specified as a trajectoryOptimalFrenet
object.

frenetStates — Vector of Frenet states
six-element vector

Vector of Frenet states, specified as a 1-by-6 vector, [s, ds, dds, l, dl, ddl]. s
specifies the arc length from the first point in reference path in meters, ds specifies the
first derivative of arc length, dds specifies the second derivative of arc length, l specifies
the normal distance from the closest point in the reference path, dl specifies the first
derivative of normal distance, and ddl specifies the second derivative of normal distance.
Example: [10 1 0 3 0 0]
Data Types: double
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cart2frenet | trajectoryOptimalFrenet

Introduced in R2019b
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plan
Plan optimal trajectory

Syntax
[traj,index,cost] = plan(planner,start)

Description
[traj,index,cost] = plan(planner,start) computes a feasible trajectory, traj,
from a list of candidate trajectories generated from the trajectoryOptimalFrenet
object, planner. start is specified as a 6-element vector [s, ds, dds, l, dl,
ddl], where s is the arc length from the first point in the reference path, and l is normal
distance from the closest point at s on the reference path. The output trajectory, traj,
also has an associated cost and index for the TrajectoryList property of the planner.
To improve the results of the planning output, modify the parameters on the planner
object.

Examples

Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a
trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(700,700);
grid(296:305,150:175) = 1;
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grid(286:295,300:325) = 1;
grid(306:315,300:325) = 1;
grid(296:305,450:475) = 1;
grid(286:295,600:625) = 1;
grid(306:315,600:625) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map to the state validator.

stateValidator.Map = map;

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [10,400;700,400];

Declare the cost function handle to prioritize left lane changes.

leftLaneChangeCost = @(states)((states(end,2) < refPath(end,2))*10);

Initialize the planner object with the reference path, the state validator, and the custom
cost function.

plannerObj = trajectoryOptimalFrenet(refPath,stateValidator,'CostFunction',leftLaneChangeCost);

Assign lateral deviation values.

plannerObj.TerminalStates.Lateral = -10:10:10;

Trajectory Generation

Initialize the variables for the replanning loop.

previousDeviationValue = 0;
deviationValue = 0;
initState = zeros(1,6);

Replan until final waypoint is closest to the terminal state.

for j = 1:150
    
    % Deviation from the current reference path
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    if initState(4) > 5
        deviationValue = 10;
    elseif initState(4) < -5
        deviationValue = -10;
    end
    
    % Move reference path to the current lane
    if previousDeviationValue ~= deviationValue
        % Shift the waypoints by the deviation value
        plannerObj.Waypoints = [plannerObj.Waypoints(:,1), plannerObj.Waypoints(:,2) + deviationValue];
        
        % Shift the terminal states such that they remain fixed in world frame
        plannerObj.TerminalStates.Lateral = plannerObj.TerminalStates.Lateral - deviationValue;
        
        % Store the deviation value
        previousDeviationValue = deviationValue;
        
        % Update initState variable with the new planner object
        initState = cart2frenet(plannerObj,trajectory(10,1:6));
    end
    
    % Generate a trajectory from initState
    trajectory = plan(plannerObj,initState);
    
    % Use 10th state of the current trajectory as a starting point for
    % replanning
    initState = cart2frenet(plannerObj,trajectory(10,1:6));
    
    % Visualize every 5th iteration
    if mod(j,5)==0
        show(map)
        hold on;
        show(plannerObj,'TrajectoryColor','none');
        drawnow
    end
end
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Input Arguments
planner — Optimal trajectory planner in frenet space
trajectoryOptimalFrenet object

Optimal trajectory planner in frenet space, specified as a trajectoryOptimalFrenet
object.

start — Initial Frenet state
six-element vector

 plan
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Initial Frenet state, specified as a 1-by-6 vector, [s, ds, dds, l, dl, ddl]. s
specifies the arc length from the first point in reference path in meters, ds specifies the
first derivative of arc length, dds specifies the second derivative of arc length, l specifies
the normal distance from the closest point in the reference path, dl specifies the first
derivative of normal distance, and ddl specifies the second derivative of normal distance.

Output Arguments
traj — Feasible trajectory with minimum cost
n-by-7 matrix

Feasible trajectory with minimum cost, returned as an n-by-7 matrix of [x, y, theta,
kappa, speed, acceleration], where n is the number of feasible trajectory.

index — Index of feasible trajectory with least cost
positive integer scalar

Index of feasible trajectory with least cost, retuned as a positive integer scalar.

cost — Least cost of feasible trajectory
positive scalar

Least cost of feasible trajectory, retuned as a positive scalar.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
show | trajectoryOptimalFrenet

Introduced in R2019b
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show
Visualize trajectories

Syntax
show(planner)
show(planner,Name,Value)
axHandle = show(planner)

Description
show(planner) visualizes the reference path and trajectory from the candidates
generated by the plan function. The trajectory is shown as a line plot. The plot also
includes datatip mode, which can be used to visualize the feasibility vector and index of
the trajectory from the TrajectoryList property.

show(planner,Name,Value) specifies additional options using one or more
Name,Value pair arguments. Enclose each name inside single quotes (' ').

axHandle = show(planner) returns the axes handle of the figure used to plot the
trajectory.

Examples

Optimal Trajectory Planning in Frenet Space

This example shows how to plan an optimal trajectory using a
trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

 show

2-1007



Create an obstacle grid map.

grid = zeros(700,700);
grid(296:305,150:175) = 1;
grid(286:295,300:325) = 1;
grid(306:315,300:325) = 1;
grid(296:305,450:475) = 1;
grid(286:295,600:625) = 1;
grid(306:315,600:625) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map to the state validator.

stateValidator.Map = map;

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [10,400;700,400];

Declare the cost function handle to prioritize left lane changes.

leftLaneChangeCost = @(states)((states(end,2) < refPath(end,2))*10);

Initialize the planner object with the reference path, the state validator, and the custom
cost function.

plannerObj = trajectoryOptimalFrenet(refPath,stateValidator,'CostFunction',leftLaneChangeCost);

Assign lateral deviation values.

plannerObj.TerminalStates.Lateral = -10:10:10;

Trajectory Generation

Initialize the variables for the replanning loop.

previousDeviationValue = 0;
deviationValue = 0;
initState = zeros(1,6);

Replan until final waypoint is closest to the terminal state.
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for j = 1:150
    
    % Deviation from the current reference path
    if initState(4) > 5
        deviationValue = 10;
    elseif initState(4) < -5
        deviationValue = -10;
    end
    
    % Move reference path to the current lane
    if previousDeviationValue ~= deviationValue
        % Shift the waypoints by the deviation value
        plannerObj.Waypoints = [plannerObj.Waypoints(:,1), plannerObj.Waypoints(:,2) + deviationValue];
        
        % Shift the terminal states such that they remain fixed in world frame
        plannerObj.TerminalStates.Lateral = plannerObj.TerminalStates.Lateral - deviationValue;
        
        % Store the deviation value
        previousDeviationValue = deviationValue;
        
        % Update initState variable with the new planner object
        initState = cart2frenet(plannerObj,trajectory(10,1:6));
    end
    
    % Generate a trajectory from initState
    trajectory = plan(plannerObj,initState);
    
    % Use 10th state of the current trajectory as a starting point for
    % replanning
    initState = cart2frenet(plannerObj,trajectory(10,1:6));
    
    % Visualize every 5th iteration
    if mod(j,5)==0
        show(map)
        hold on;
        show(plannerObj,'TrajectoryColor','none');
        drawnow
    end
end
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Input Arguments
planner — Optimal trajectory planner in frenet space
trajectoryOptimalFrenet object

Optimal trajectory planner in frenet space, specified as a trajectoryOptimalFrenet
object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Trajectory','all'

Parent — Axes to plot trajectory
Axes object | UIAxes object

Axes to plot trajectory, specified as the comma-separated pair consisting of 'Parent'
and either an Axes or UIAxes object. See axes or uiaxes.

Trajectory — Trajectory display option
'optimal' (default) | 'all'

Trajectory display option, specified as the comma-separated pair consisting of
'Trajectory' and either 'optimal' or 'all'.

ReferencePath — Reference path display option
'on' (default) | 'off'

Reference path display option, specified as the comma-separated pair consisting of
'ReferencePath' and either 'on' or 'off'.

TrajectoryColor — Trajectory color display option
'velocity' (default) | 'acceleration' | 'cost' | 'none'

Trajectory color display option, specified as the comma-separated pair consisting of
'TrajectoryColor' and one of the following:

• 'acceleration'
• 'cost'
• 'velocity'
• 'none'

Set this property to display the specified trajectory as a color-gradient along the specified
path.

Output Arguments
axHandle — Axes handle used to plot trajectory
Axes object | UIAxes object

 show
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Axes handle used to plot trajectory, returned as either an axes, or uiaxes object.

See Also
plan | trajectoryOptimalFrenet

Introduced in R2019b
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validatorOccupancyMap
State validator based on 2-D grid map

Description
The validatorOccupancyMap object validates states and discretized motions based on
the value in a 2-D occupancy map. An occupied map location is interpreted as an invalid
state.

Creation

Syntax

Description
validator = validatorOccupancyMap creates a vehicle cost map validator
associated with an SE2 state space with default settings.

validator = validatorOccupancyMap(stateSpace) creates a validator in the
given state space definition derived from nav.StateSpace.

validator = validatorOccupancyMap(stateSpace,Name,Value) specifies the
Map or XYIndices properties using Name,Value pair arguments.

Properties
StateSpace — State space for validating states
stateSpaceSE2 (default) | subclass of nav.StateSpace

State space for validating states, specified as a subclass of nav.StateSpace. Provided
state space objects include:

 validatorOccupancyMap

2-1013



• stateSpaceSE2
• stateSpaceDubins
• stateSpaceReedsShepp

Map — Map used for validating states
binaryOccupancyMap(10,10) (default) | binaryOccupancyMap object |
occupancyMap object

Map used for validating states, specified as a binaryOccupancyMap or occupancyMap
object.

ValidationDistance — Interval for checking state validity
Inf (default) | positive numeric scalar

Interval for sampling between states and checking state validity, specified as a positive
numeric scalar.

XYIndices — State variable mapping for xy-coordinates
[1 2] (default) | [xIdx yIdx]

State variable mapping for xy-coordinates in state vector, specified as a two-element
vector, [xIdx yIdx]. For example, if a state vector is given as [r p y x y z], the xy-
coordinates are [4 5].

Object Functions
isStateValid Check if state is valid
isMotionValid Check if path between states is valid

Examples

Validate Path Through Occupancy Map Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a binary occupancy map.
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load exampleMaps.mat
map = occupancyMap(simpleMap);
show(map)

Specify a coarse path through the map.

path = [2 2 pi/2; 10 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")

 validatorOccupancyMap
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the
distance for interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are
considered valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array
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   1
   1

Check the motion between each sequential path states. The isMotionValid function
interpolates along the path between states. If a path segment is invalid, plot the last valid
point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Specify the Map and XYIndices properties when your create the object. For example:

validator = validatorOccupancyMap('Map',occMap,'XYIndices',[4 5]
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See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2

Introduced in R2019b
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validatorVehicleCostmap
State validator based on 2-D costmap

Description
The validatorOccupancyMap object validates states and discretized motions based on
the value in a 2-D costmap. An occupied map location is interpreted as an invalid state.

Creation

Syntax

Description
validator = validatorVehicleCostmap creates a vehicle cost map validator
associated with an SE2 state space with default settings.

validator = validatorVehicleCostmap(stateSpace) creates a validator in the
given state space definition derived from nav.StateSpace.

validator = validatorVehicleCostmap(stateSpace,xyIndices)sets the
XYIndices property to specify which variables in the state vector define the xy-
coordinates.

validator = validatorVehicleCostmap(stateSpace,Name,Value) specifies the
Map or XYIndices properties using Name,Value pair arguments.

Properties
StateSpace — State space for validating states
stateSpaceSE2 (default) | subclass of nav.StateSpace
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State space for validating states, specified as a subclass of nav.StateSpace. Provided
state space objects include:

• stateSpaceSE2
• stateSpaceDubins
• stateSpaceReedsShepp

Map — Map used for validating states
vehicleCostMap(10,10) (default) | vehicleCostMap object

Map used for validating states, specified as a vehicleCostMap object.

ValidationDistance — Interval for checking state validity
Inf (default) | positive numeric scalar

Interval for sampling between states and checking state validity, specified as a positive
numeric scalar.

XYIndices — State variable mapping for xy-coordinates
[1 2] (default) | [xIdx yIdx]

State variable mapping for xy-coordinates in state vector, specified as a two-element
vector, [xIdx yIdx]. For example, if a state vector is given as [r p y x y z], the xy-
coordinates are [4 5].

Object Functions
isStateValid Check if state is valid
isMotionValid Check if path between states is valid

Examples

Validate Path Through Vehicle Costmap Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a vehicle cost map. Specify an inflation
raidus of 1 meter.
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load exampleMaps.mat
map = vehicleCostmap(double(simpleMap));
map.CollisionChecker = inflationCollisionChecker("InflationRadius",1);
plot(map)

Specify a coarse path through the map.

path = [3 3 pi/2; 8 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the
distance for interpolating and validating path segments.

validator = validatorVehicleCostmap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are
considered valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

 validatorVehicleCostmap
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Check the motion between each sequential path states. The isMotionValid function
interpolates along the path between states. If a path segment is invalid, plot the last valid
point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off
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See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 |
validatorOccupancyMap

Introduced in R2019b
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isMotionValid
Check if path between states is valid

Syntax
[isValid,lastValid] = isMotionValid(validatorObj,state1,state2)

Description
[isValid,lastValid] = isMotionValid(validatorObj,state1,state2)
determines if the motion between two states is valid by interpolating between states. The
function also returns the last valid state along the path.

Examples

Validate Path Through Occupancy Map Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a binary occupancy map.

load exampleMaps.mat
map = occupancyMap(simpleMap);
show(map)
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Specify a coarse path through the map.

path = [2 2 pi/2; 10 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")

 isMotionValid
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the
distance for interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are
considered valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

2 Classes — Alphabetical List

2-1028



   1
   1
   1

Check the motion between each sequential path states. The isMotionValid function
interpolates along the path between states. If a path segment is invalid, plot the last valid
point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off

 isMotionValid

2-1029



Validate Path Through Vehicle Costmap Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a vehicle cost map. Specify an inflation
raidus of 1 meter.

load exampleMaps.mat
map = vehicleCostmap(double(simpleMap));
map.CollisionChecker = inflationCollisionChecker("InflationRadius",1);
plot(map)
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Specify a coarse path through the map.

path = [3 3 pi/2; 8 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")

 isMotionValid
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the
distance for interpolating and validating path segments.

validator = validatorVehicleCostmap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are
considered valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array
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Check the motion between each sequential path states. The isMotionValid function
interpolates along the path between states. If a path segment is invalid, plot the last valid
point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off

 isMotionValid
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Input Arguments
validatorObj — State validator object
object of subclass of nav.StateValidator

State validator object, specified as an object of subclass of nav.StateValidator. For
provided state validator objects, see validatorOccupancyMap or
validatorVehicleCostmap.

state1 — Initial state positions
n-element vector | m-by-n matrix of row vectors
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Initial state positions, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in validatorObj. m is the number of states to
validate.

state2 — Final state positions
n-element vector | m-by-n matrix of row vectors

Final state positions, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in validatorObj. m is the number of states to
validate.

Output Arguments
isValid — Valid states
m-element vector of 1s and 0s

Valid states, specified as a m-element vector of 1s and 0s.

lastValid — Final valid state along path
n-element vector | m-by-n matrix of row vectors

Final valid state along path, specified as a n-element vector or m-by-n matrix of row
vectors. n is the dimension of the state space specified in the state space property in
validatorObj.

See Also
isStateValid | nav.StateSpace | nav.StateValidator | stateSpaceSE2

Introduced in R2019b
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isStateValid
Check if state is valid

Syntax
isValid = isStateValid(validatorObj,states)

Description
isValid = isStateValid(validatorObj,states) verifies if a set of given states
are valid.

Examples

Validate Path Through Occupancy Map Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a binary occupancy map.

load exampleMaps.mat
map = occupancyMap(simpleMap);
show(map)
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Specify a coarse path through the map.

path = [2 2 pi/2; 10 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")

 isStateValid
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the
distance for interpolating and validating path segments.

validator = validatorOccupancyMap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are
considered valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array

2 Classes — Alphabetical List

2-1038



   1
   1
   1

Check the motion between each sequential path states. The isMotionValid function
interpolates along the path between states. If a path segment is invalid, plot the last valid
point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off
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Validate Path Through Vehicle Costmap Environment

This example shows how to validate paths through an evironment.

Load example maps. Use the simple map to create a vehicle cost map. Specify an inflation
raidus of 1 meter.

load exampleMaps.mat
map = vehicleCostmap(double(simpleMap));
map.CollisionChecker = inflationCollisionChecker("InflationRadius",1);
plot(map)
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Specify a coarse path through the map.

path = [3 3 pi/2; 8 15 0; 17 8 -pi/2];
hold on
plot(path(:,1),path(:,2),"--o")
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Create a state validator using the stateSpaceSE2 definition. Specify the map and the
distance for interpolating and validating path segments.

validator = validatorVehicleCostmap(stateSpaceSE2);
validator.Map = map;
validator.ValidationDistance = 0.1;

Check the points of the path are valid states. All three points are in free space, so are
considered valid.

isValid = isStateValid(validator,path)

isValid = 3x1 logical array
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   1
   1

Check the motion between each sequential path states. The isMotionValid function
interpolates along the path between states. If a path segment is invalid, plot the last valid
point along the path.

startStates = [path(1,:);path(2,:)];
endStates = [path(2,:);path(3,:)];
    for i = 1:2
        [isPathValid, lastValid] = isMotionValid(validator,startStates(i,:),endStates(i,:));
        if ~isPathValid
            plot(lastValid(1),lastValid(2),'or')
        end
    end
hold off
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Input Arguments
validatorObj — State validator object
object of subclass of nav.StateValidator

State validator object, specified as an object of subclass of nav.StateValidator. For
provided state validator objects, see validatorOccupancyMap or
validatorVehicleCostmap.

states — State positions
n-element vector | m-by-n matrix of row vectors
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Initial state position, specified as a n-element vector or m-by-n matrix of row vectors. n is
the dimension of the state space specified in validatorObj. m is the number of states to
validate.

Output Arguments
isValid — Valid states
m-element vector of 1s and 0s

Valid states, specified as a m-element vector of 1s and 0s.

See Also
isMotionValid | nav.StateSpace | nav.StateValidator | stateSpaceSE2

Introduced in R2019b
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waypointTrajectory
Waypoint trajectory generator

Description
The waypointTrajectory System object generates trajectories using specified
waypoints. When you create the System object, you can optionally specify the time of
arrival, velocity, and orientation at each waypoint.

To generate a trajectory from waypoints:

1 Create the waypointTrajectory object and set its properties.
2 Call the object as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
trajectory = waypointTrajectory
trajectory = waypointTrajectory(Waypoints,TimeOfArrival)
trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value)

Description
trajectory = waypointTrajectory returns a System object, trajectory, that
generates a trajectory based on default stationary waypoints.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival) specifies the
Waypoints that the generated trajectory passes through and the TimeOfArrival at
each waypoint.
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trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value)
sets each creation argument or property Name to the specified Value. Unspecified
properties and creation arguments have default or inferred values.
Example: trajectory = waypointTrajectory([10,10,0;20,20,0;20,20,10],
[0,0.5,10]) creates a waypoint trajectory System object, trajectory, that starts at
waypoint [10,10,0], and then passes through [20,20,0] after 0.5 seconds and
[20,20,10] after 10 seconds.

Creation Arguments
Creation arguments are properties which are set during creation of the System object and
cannot be modified later. If you do not explicitly set a creation argument value, the
property value is inferred.

If you specify any creation argument, then you must specify both the Waypoints and
TimeOfArrival creation arguments. You can specify Waypoints and TimeOfArrival as
value-only arguments or name-value pairs.

Waypoints — Positions in the navigation coordinate system (m)
N-by-3 matrix

Positions in the navigation coordinate system in meters, specified as an N-by-3 matrix.
The columns of the matrix correspond to the North, East, and Down axes, respectively.
The rows of the matrix, N, correspond to individual waypoints.
Dependencies

To set this property, you must also set valid values for the TimeOfArrival property.
Data Types: double

TimeOfArrival — Time at each waypoint (s)
N-element column vector of nonnegative increasing numbers

Time corresponding to arrival at each waypoint in seconds, specified as an N-element
column vector. The first element of TimeOfArrival must be 0. The number of samples,
N, must be the same as the number of samples (rows) defined by Waypoints.
Dependencies

To set this property, you must also set valid values for the Waypoints property.
Data Types: double

 waypointTrajectory

2-1047



Velocities — Velocity in navigation coordinate system at each waypoint (m/s)
N-by-3 matrix

Velocity in the navigation coordinate system at each way point in meters per second,
specified as an N-by-3 matrix. The columns of the matrix correspond to the North, East,
and Down axes, respectively. The number of samples, N, must be the same as the number
of samples (rows) defined by Waypoints.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival
properties.
Data Types: double

Orientation — Orientation at each waypoint
N-element quaternion column vector | 3-by-3-by-N array of real numbers

Orientation at each waypoint, specified as an N-element quaternion column vector or 3-
by-3-by-N array of real numbers. The number of quaternions or rotation matrices, N, must
be the same as the number of samples (rows) defined by Waypoints.

If Orientation is specified by quaternions, the underlying class must be double.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival
properties.
Data Types: quaternion | double

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).
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SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive scalar integer

Number of samples per output frame, specified as a positive scalar integer.

Tunable: No
Data Types: double

Usage

Syntax
[position, orientation, velocity, acceleration, angularVelocity] =
trajectory()

Description
[position, orientation, velocity, acceleration, angularVelocity] =
trajectory() outputs a frame of trajectory data based on specified creation arguments
and properties.

Output Arguments
position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3
matrix.
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M is specified by the SamplesPerFrame property.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion
column vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation
coordinate system to the current body coordinate system.

M is specified by the SamplesPerFrame property.
Data Types: double

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-
by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared,
returned as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system
(rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned
as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
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Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to waypointTrajectory
waypointInfo Get waypoint information table

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
isDone End-of-data status

Examples

Create Default waypointTrajectory
trajectory = waypointTrajectory

trajectory = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1

Inspect the default waypoints and times of arrival by calling waypointInfo. By default,
the waypoints indicate a stationary position for one second.

waypointInfo(trajectory)

ans=2×2 table
    TimeOfArrival     Waypoints 
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    _____________    ___________

          0          0    0    0
          1          0    0    0

Create Square Trajectory

Create a square trajectory and examine the relationship between waypoint constraints,
sample rate, and the generated trajectory.

Create a square trajectory by defining the vertices of the square. Define the orientation at
each waypoint as pointing in the direction of motion. Specify a 1 Hz sample rate and use
the default SamplesPerFrame of 1.

waypoints = [0,0,0; ... % Initial position
             0,1,0; ...
             1,1,0; ...
             1,0,0; ...
             0,0,0];    % Final position

toa = 0:4; % time of arrival

orientation = quaternion([0,0,0; ...
                          45,0,0; ...
                          135,0,0; ...
                          225,0,0; ...
                          0,0,0], ...
                          'eulerd','ZYX','frame');

trajectory = waypointTrajectory(waypoints, ...
    'TimeOfArrival',toa, ...
    'Orientation',orientation, ...
    'SampleRate',1);

Create a figure and plot the initial position of the platform.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
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xlabel('X')
ylabel('Y')
grid on
hold on

In a loop, step through the trajectory to output the current position and current
orientation. Plot the current position and log the orientation. Use pause to mimic real-
time processing.

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

 waypointTrajectory
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   plot(currentPosition(1),currentPosition(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
hold off

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot
orientation over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
plot(toa,eulerAngles(:,1),'ko', ...
     toa,eulerAngles(:,2),'bd', ...
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     toa,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

So far, the trajectory object has only output the waypoints that were specified during
construction. To interpolate between waypoints, increase the sample rate to a rate faster
than the time of arrivals of the waypoints. Set the trajectory sample rate to 100 Hz
and call reset.

trajectory.SampleRate = 100;
reset(trajectory)
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Create a figure and plot the initial position of the platform. In a loop, step through the
trajectory to output the current position and current orientation. Plot the current position
and log the orientation. Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
hold off
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The trajectory output now appears circular. This is because the waypointTrajectory
System object™ minimizes the acceleration and angular velocity when interpolating,
which results in smoother, more realistic motions in most scenarios.

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot
orientation over time. The orientation is also interpolated.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
plot(t,eulerAngles(:,1),'ko', ...
     t,eulerAngles(:,2),'bd', ...
     t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
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legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

The waypointTrajectory algorithm interpolates the waypoints to create a smooth
trajectory. To return to the square trajectory, provide more waypoints, especially around
sharp changes. To track corresponding times, waypoints, and orientation, specify all the
trajectory info in a single matrix.

               % Time, Waypoint, Orientation
trajectoryInfo = [0,   0,0,0,    0,0,0; ... % Initial position
                  0.1, 0,0.1,0,  0,0,0; ...
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                  0.9, 0,0.9,0,  0,0,0; ...
                  1,   0,1,0,    45,0,0; ...
                  1.1, 0.1,1,0,  90,0,0; ...

                  1.9, 0.9,1,0,  90,0,0; ...
                  2,   1,1,0,    135,0,0; ...
                  2.1, 1,0.9,0,  180,0,0; ...

                  2.9, 1,0.1,0,  180,0,0; ...
                  3,   1,0,0,    225,0,0; ...
                  3.1, 0.9,0,0,  270,0,0; ...

                  3.9, 0.1,0,0,  270,0,0; ...
                  4,   0,0,0,    270,0,0];    % Final position

trajectory = waypointTrajectory(trajectoryInfo(:,2:4), ...
    'TimeOfArrival',trajectoryInfo(:,1), ...
    'Orientation',quaternion(trajectoryInfo(:,5:end),'eulerd','ZYX','frame'), ...
    'SampleRate',100);

Create a figure and plot the initial position of the platform. In a loop, step through the
trajectory to output the current position and current orientation. Plot the current position
and log the orientation. Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count+1;
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end
hold off

The trajectory output now appears more square-like, especially around the vertices with
waypoints.

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot
orientation over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
eulerAngles = plot(t,eulerAngles(:,1),'ko', ...
                   t,eulerAngles(:,2),'bd', ...
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                   t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
       'Location', 'SouthWest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on
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Create Arc Trajectory

This example shows how to create an arc trajectory using the waypointTrajectory
System object™. waypointTrajectory creates a path through specified waypoints that
minimizes acceleration and angular velocity. After creating an arc trajectory, you restrict
the trajectory to be within preset bounds.

Create an Arc Trajectory

Define a constraints matrix consisting of waypoints, times of arrival, and orientation for
an arc trajectory. The generated trajectory passes through the waypoints at the specified
times with the specified orientation. The waypointTrajectory System object requires
orientation to be specified using quaternions or rotation matrices. Convert the Euler
angles saved in the constrains matrix to quaternions when specifying the Orientation
property.

          % Arrival, Waypoints, Orientation
constraints = [0,    20,20,0,    90,0,0;
               3,    50,20,0,    90,0,0;
               4,    58,15.5,0,  162,0,0;
               5.5,  59.5,0,0    180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
    'TimeOfArrival',constraints(:,1), ...
    'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));

Call waypointInfo on trajectory to return a table of your specified constraints. The
creation properties Waypoints, TimeOfArrival, and Orientation are variables of the
table. The table is convenient for indexing while plotting.

tInfo = waypointInfo(trajectory)

tInfo =

  4x3 table

    TimeOfArrival         Waypoints            Orientation   
    _____________    ____________________    ________________

           0           20      20       0    {1x1 quaternion}
           3           50      20       0    {1x1 quaternion}
           4           58    15.5       0    {1x1 quaternion}
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         5.5         59.5       0       0    {1x1 quaternion}

The trajectory object outputs the current position, velocity, acceleration, and angular
velocity at each call. Call trajectory in a loop and plot the position over time. Cache
the other outputs.

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')
title('Position')
axis([20,65,0,25])
xlabel('North')
ylabel('East')
grid on
daspect([1 1 1])
hold on

orient = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,1,'quaternion');
vel = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,3);
acc = vel;
angVel = vel;

count = 1;
while ~isDone(trajectory)
   [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

   plot(pos(1),pos(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
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Inspect the orientation, velocity, acceleration, and angular velocity over time. The
waypointTrajectory System object™ creates a path through the specified constraints
that minimized acceleration and angular velocity.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd([tInfo.Orientation{1};orient],'ZYX','frame');
plot(timeVector,eulerAngles(:,1), ...
     timeVector,eulerAngles(:,2), ...
     timeVector,eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
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       'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

figure(3)
plot(timeVector(2:end),vel(:,1), ...
     timeVector(2:end),vel(:,2), ...
     timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
     timeVector(2:end),acc(:,2), ...
     timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down','Location','southwest')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
     timeVector(2:end),angVel(:,2), ...
     timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on

 waypointTrajectory

2-1065



2 Classes — Alphabetical List

2-1066



 waypointTrajectory

2-1067



2 Classes — Alphabetical List

2-1068



Restrict Arc Trajectory Within Preset Bounds

You can specify additional waypoints to create trajectories within given bounds. Create
upper and lower bounds for the arc trajectory.

figure(1)
xUpperBound = [(20:50)';50+10*sin(0:0.1:pi/2)';60*ones(11,1)];
yUpperBound = [20.5.*ones(31,1);10.5+10*cos(0:0.1:pi/2)';(10:-1:0)'];

xLowerBound = [(20:49)';50+9*sin(0:0.1:pi/2)';59*ones(11,1)];
yLowerBound = [19.5.*ones(30,1);10.5+9*cos(0:0.1:pi/2)';(10:-1:0)'];

plot(xUpperBound,yUpperBound,'r','LineWidth',2);
plot(xLowerBound,yLowerBound,'r','LineWidth',2)

 waypointTrajectory

2-1069



To create a trajectory within the bounds, add additional waypoints. Create a new
waypointTrajectory System object™, and then call it in a loop to plot the generated
trajectory. Cache the orientation, velocity, acceleration, and angular velocity output from
the trajectory object.

            % Time,  Waypoint,     Orientation
constraints = [0,    20,20,0,      90,0,0;
               1.5,  35,20,0,      90,0,0;
               2.5   45,20,0,      90,0,0;
               3,    50,20,0,      90,0,0;
               3.3,  53,19.5,0,    108,0,0;
               3.6,  55.5,18.25,0, 126,0,0;
               3.9,  57.5,16,0,    144,0,0;
               4.2,  59,14,0,      162,0,0;
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               4.5,  59.5,10,0     180,0,0;
               5,    59.5,5,0      180,0,0;
               5.5,  59.5,0,0      180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
    'TimeOfArrival',constraints(:,1), ...
    'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));
tInfo = waypointInfo(trajectory);

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')

count = 1;
while ~isDone(trajectory)
   [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

   plot(pos(1),pos(2),'gd')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
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The generated trajectory now fits within the specified boundaries. Visualize the
orientation, velocity, acceleration, and angular velocity of the generated trajectory.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd(orient,'ZYX','frame');
plot(timeVector(2:end),eulerAngles(:,1), ...
     timeVector(2:end),eulerAngles(:,2), ...
     timeVector(2:end),eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
       'Location','southwest')
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xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

figure(3)
plot(timeVector(2:end),vel(:,1), ...
     timeVector(2:end),vel(:,2), ...
     timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
     timeVector(2:end),acc(:,2), ...
     timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
     timeVector(2:end),angVel(:,2), ...
     timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on
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Note that while the generated trajectory now fits within the spatial boundaries, the
acceleration and angular velocity of the trajectory are somewhat erratic. This is due to
over-specifying waypoints.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object function, waypointInfo, does not support code generation.

 waypointTrajectory
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
kinematicTrajectory

Introduced in R2018b
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waypointInfo
Get waypoint information table

Syntax
trajectoryInfo = waypointInfo(trajectory)

Description
trajectoryInfo = waypointInfo(trajectory) returns a table of waypoints, times
of arrival, velocities, and orientation for the trajectory System object

Input Arguments
trajectory — Object of waypointTrajectory
object

Object of the waypointTrajectory System object.

Output Arguments
trajectoryInfo — Trajectory information
table

Trajectory information, returned as a table with variables corresponding to set creation
properties: Waypoints, TimeOfArrival, Velocities, and Orientation.

The trajectory information table always has variables Waypoints and TimeOfArrival.
If the Velocities property is set during construction, the trajectory information table
additionally returns velocities. If the Orientation property is set during construction,
the trajectory information table additionally returns orientation.
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See Also
kinematicTrajectory | waypointTrajectory

Introduced in R2018b
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Coordinate Transformation Conversion
Convert to a specified coordinate transformation representation
Library: Robotics System Toolbox / Utilities

Navigation Toolbox / Utilities
ROS Toolbox / Utilities

Description
The Coordinate Transformation Conversion block converts a coordinate transformation
from the input representation to a specified output representation. The input and output
representations use the following forms:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information
(TrVec or Eul, for example), you can specify two inputs or outputs to handle all
transformation information. When you select the Homogeneous Transformation as an
input or output, an optional Show TrVec input/output port parameter can be
selected on the block mask to toggle the multiple ports.

Ports

Input
Input transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix
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Input transformation, specified as a coordinate transformation. The following
representations are supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information
(TrVec or Eul, for example), you can specify two inputs or outputs to handle all
transformation information. When you select the Homogeneous Transformation as an
input or output, an optional Show TrVec input/output port parameter can be
selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
3-element column vector

Translation vector, specified as a 3-element column vector, [x y z], which corresponds
to a translation in the x, y, and z axes respectively. This port can be used to input or
output the translation information separately from the rotation vector.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation
port to get the option to show the additional TrVec port. Enable the port by clicking Show
TrVec input/output port.

Output Arguments
Output transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Output transformation, specified as a coordinate transformation with the specified
representation. The following representations are supported:

 Coordinate Transformation Conversion

4-3



• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

To accommodate representations that only contain position or orientation information
(TrVec or Eul, for example), you can specify two inputs or outputs to handle all
transformation information. When you select the Homogeneous Transformation as an
input or output, an optional Show TrVec input/output port parameter can be
selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
three-element column vector

Translation vector, specified as a three-element column vector, [x y z], which
corresponds to a translation in the x, y, and z axes respectively. This port can be used to
input or output the translation information separately from the rotation vector.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation
port to get the option to show the additional TrVec port. Enable the port by clicking Show
TrVec input/output port.

Parameters
Representation — Input or output representation
Axis-Angle | Euler Angles | Homogeneous Transformation | Rotation Matrix |
Translation Vector | Quaternion

Select the representation for both the input and output port for the block. If you are using
a transformation with only orientation information, you can also select the Show TrVec
input/output port when converting to or from a homogeneous transformation.

Show TrVec input/output port — Toggle TrVec port
off (default) | on
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Toggle the TrVec input or output port when you want to specify or receive a separate
translation vector for position information along with an orientation representation.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation
port to get the option to show the additional TrVec port.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
axang2quat | eul2tform | trvec2tform

Introduced in R2017b
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Pure Pursuit
Linear and angular velocity control commands
Library: Robotics System Toolbox / Mobile Robot Algorithms /

Navigation Toolbox / Control Algorithms

Description
The Pure Pursuit block computes linear and angular velocity commands for following a
path using a set of waypoints and the current pose of a differential drive vehicle. The
block takes updated poses to update velocity commands for the vehicle to follow a path
along a desired set of waypoints. Use the Max angular velocity and Desired linear
velocity parameters to update the velocities based on the performance of the vehicle.

The Lookahead distance parameter computes a look-ahead point on the path, which is
an instantaneous local goal for the vehicle. The angular velocity command is computed
based on this point. Changing Lookahead distance has a significant impact on the
performance of the algorithm. A higher look-ahead distance results in a smoother
trajectory for the vehicle, but can cause the vehicle to cut corners along the path. Too low
of a look-ahead distance can result in oscillations in tracking the path, causing unstable
behavior. For more information on the pure pursuit algorithm, see “Pure Pursuit
Controller”.

Input/Output Ports

Input
Pose — Current vehicle pose
[x y theta] vector

Current vehicle pose, specified as an [x y theta] vector, which corresponds to the x-y
position and orientation angle, theta. Positive angles are measured counterclockwise from
the positive x-axis.
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Waypoints — Waypoints
[ ] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of
waypoints. You can generate the waypoints using path planners like mobileRobotPRM or
specify them as an array in Simulink®.

Output
LinVel — Linear velocity
scalar in meters per second

Linear velocity, specified as a scalar in meters per second.
Data Types: double

AngVel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.
Data Types: double

TargetDir — Target direction for vehicle
scalar in radians

Target direction for the vehicle, specified as a scalar in radians. The forward direction of
the vehicle is considered zero radians, with positive angles measured counterclockwise.
This output can be used as the input to the TargetDir port for the Vector Field Histogram
block.

Dependencies

To enable this port, select the Show TargetDir output port parameter.

Parameters
Desired linear velocity (m/s) — Linear velocity
0.1 (default) | scalar
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Desired linear velocity, specified as a scalar in meters per second. The controller assumes
that the vehicle drives at a constant linear velocity and that the computed angular
velocity is independent of the linear velocity.

Maximum angular velocity (rad/s) — Angular velocity
1.0 (default) | scalar

Maximum angular velocity, specified as a scalar in radians per second. The controller
saturates the absolute angular velocity output at the given value.

Lookahead distance (m) — Look-ahead distance
1.0 (default) | scalar

Look-ahead distance, specified as a scalar in meters. The look-ahead distance changes the
response of the controller. A vehicle with a higher look-ahead distance produces smooth
paths but takes larger turns at corners. A vehicle with a smaller look-ahead distance
follows the path closely and takes sharp turns, but oscillate along the path. For more
information on the effects of look-ahead distance, see “Pure Pursuit Controller”.

Show TargetDir output port — Target direction indicator
off (default) | on

Select this parameter to enable the TargetDir out port. This port gives the target
direction as an angle in radians from the forward position, with positive angles measured
counterclockwise.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Vector Field Histogram
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Classes
binaryOccupancyMap | binaryOccupancyMap | controllerVFH | occupancyMap |
occupancyMap

Topics
“Plan Path for a Differential Drive Robot in Simulink” (Robotics System Toolbox)
“Path Following with Obstacle Avoidance in Simulink®”
“Pure Pursuit Controller”

Introduced in R2019b
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Vector Field Histogram
Avoid obstacles using vector field histogram
Library: Navigation Toolbox / Control Algorithms

Description
The Vector Field Histogram (VFH) block enables your vehicle to avoid obstacles based on
range sensor data. Given a range sensor reading in terms of ranges and angles, and a
target direction to drive toward, the VFH controller computes an obstacle-free steering
direction.

For more information on the algorithm details, see “Vector Field Histogram” on page 4-
13 under Algorithms.

Limitations
• The Ranges and Angles inputs are limited to 4000 elements when generating code

for models that use this block.

Input/Output Ports

Input
Ranges — Range values from scan data
vector of scalars

Range values from scan data, specified as a vector of scalars in meters. These range
values are distances from a sensor at specified angles. The vector must be the same
length as the corresponding Angles vector.
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Angles — Angle values from scan data
vector of scalars

Angle values from scan data, specified as a vector of scalars in radians. These angle
values are the specific angles of the specified ranges. The vector must be the same length
as the corresponding Ranges vector.

TargetDir — Target direction for vehicle
scalar

Target direction for the vehicle, specified as a scalar in radians. The forward direction of
the vehicle is considered zero radians, with positive angles measured counterclockwise.
You can use the TargetDir output from the Pure Pursuit block when generating controls
from a set of waypoints.

Output
steeringDir — Steering direction for vehicle
scalar

Steering direction for the vehicle, specified as a scalar in radians. This obstacle-free
direction is calculated based on the VFH+ algorithm. The forward direction of the vehicle
is considered zero radians, with positive angles measured counterclockwise.

Parameters
Main

Number of angular sectors — Number of bins used to create the histograms
180 (default) | scalar

Number of bins used to create the histograms, specified as a scalar. This parameter is
nontunable. You can set this parameter only when the object is initialized.

Range distance limits (m) — Limits for range readings
[0.05 2] (default) | two-element vector of scalars

Limits for range readings in meters, specified as a two-element vector of scalars. The
range readings input are only considered if they fall within the distance limits. Use the

 Vector Field Histogram

4-11



lower distance limit to ignore false positives from poor sensor performance at lower
ranges. Use the upper limit to ignore obstacles that are too far away from the vehicle.

Histogram thresholds — Thresholds for computing binary histogram
[3 10] (default) | two-element vector of scalars

Thresholds for computing binary histogram, specified as a two-element vector of scalars.
The algorithm uses these thresholds to compute the binary histogram from the polar
obstacle density. Polar obstacle density values higher than the upper threshold are
represented as occupied space (1) in the binary histogram. Values smaller than the lower
threshold are represented as free space (0). Values that fall between the limits are set to
the values of a previous computed binary histogram if one exists from previous iterations.
If a previous histogram does not exist, the value is set as free space (0).

vehicle radius (m) — Radius of the vehicle
0.1 (default) | scalar

Radius of the vehicle, specified as a scalar in meters. This dimension defines the smallest
circle that can circumscribe your vehicle. The vehicle radius is used to account for vehicle
size when computing the obstacle-free direction.

Safety distance (m) — Safety distance around the vehicle
0.1 (default) | scalar

Safety distance left around the vehicle position in addiction to vehicle radius, specified
as a scalar in meters. The vehicle radius and safety distance are used to compute the
obstacle-free direction.

Minimum turning radius (m) — Minimum turning radius at current speed
0.1 (default) | scalar

Minimum turning radius for the vehicle moving at its current speed, specified as a scalar
in meters.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation — Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.
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• Interpreted execution — Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Cost Function Weights

Target direction weight — Cost function weight for target direction
5 (default) | scalar

Cost function weight for moving toward the target direction, specified as a scalar. To
follow a target direction, set this weight to be higher than the sum of Current direction
weight and Previous direction weight. To ignore the target direction cost, set this
weight to 0.

Current direction weight — Cost function weight for current direction
2 (default) | scalar

Cost function weight for moving the vehicle in the current heading direction, specified as
a scalar. Higher values of this weight produce efficient paths. To ignore the current
direction cost, set this weight to 0.

Previous direction weight — Cost function weight for previous direction
2 (default) | scalar

Cost function weight for moving in the previously selected steering direction, specified as
a scalar. Higher values of this weight produce smoother paths. To ignore the previous
direction cost, set this weight to 0.

Algorithms

Vector Field Histogram
The block uses the VFH+ algorithm to compute the obstacle-free direction. First, the
algorithm takes the ranges and angles from range sensor data and builds a polar
histogram for obstacle locations. Then, it uses the input histogram thresholds to calculate
a binary histogram that indicates occupied and free directions. Finally, the algorithm
computes a masked histogram, which is computed from the binary histogram based on
the minimum turning radius of the vehicle.
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The algorithm selects multiple steering directions based on the open space and possible
driving directions. A cost function, with weights corresponding to the previous, current,
and target directions, calculates the cost of different possible directions. The algorithm
then returns an obstacle-free direction with minimal cost. Using the obstacle-free
direction, you can input commands to move your vehicle in that direction.

To use this block for your own application and environment, you must tune the algorithm
parameters. Parameter values depend on the type of vehicle, the range sensor, and the
hardware you use. For more information on the VFH algorithm, see controllerVFH.

See Also
Blocks
Publish | Pure Pursuit | Subscribe

Classes
controllerVFH

Topics
“Vector Field Histogram”

Introduced in R2019b
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SLAM Map Builder
Build 2-D grid maps using lidar-based SLAM

Description
The SLAM Map Builder app loads recorded lidar scans and odometry sensor data to
build a 2-D occupancy grid using simultaneous localization and mapping (SLAM)
algorithms. Incremental scan matching aligns and overlays scans to build the map. Loop
closure detection adjusts for drift of the vehicle odometry by detecting previously visited
locations and adjusting the overall map. Sometimes, the scan matching algorithm and
loop closure detection require manual adjustment. Use the app to manually align scans
and modify loop closures to improve the overall map accuracy. You can also tune the
SLAM algorithm settings to improve the automatic map building.

Note You must have the ROS Toolbox to use this app.
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To use the app:

Select Import > Import from rosbag. Select the rosbag file and click Open.
This opens the Import tab. For more information, see Import and Filter a
rosbag on page 5-13.

You can also specify scans and odometry poses that are prefiltered in the
workspace by calling slamMapBuilder with inputs. This skips the import
process. See Programmatic Use on page 5-13.
Use SLAM Settings to adjust the SLAM algorithm settings. Default values are
provided, but your specific sensors and data may require tuning of these
settings. The most important value to tune is the Loop Closure Threshold. For
more information, see Tune SLAM Settings on page 5-14.

Click Build to begin the SLAM map building process. The building process
aligns scans in the map using incremental scan matching, identifies loop
closures when visiting previous locations, and adjusts poses. Click Pause at any
time during the map building process to manually align incremental scans or
modify loop closures.
Click Incremental Match to modify the relative pose of the currently selected
frame and align the scan with the previous scan. Click Loop Closure to modify
or ignore the detected loop closure for the current frame. Use the slider on the
bottom to scroll back to areas where scan matching or loop closures are not
accurate. You can modify any number of scans or loop closures. For more
information, see Modify Increment Scans and Loop Closures on page 5-15.
After modifying your map, click Sync to update all the poses in the scan map.
The two options under Sync are Sync, which searches for new loop closures, or
Sync Fast, which skips loop closure searching and just updates the scan map.
For more information, see Sync the Map on page 5-16.

When you are satisfied with how the map looks, click Export to
OccupancyGrid to either export the map to an m-file or save the map in the
workspace. The map is output as a 2-D probabilistic occupancy grid in an
occupancyMap object.
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You can open existing app sessions you have saved using Open Session. When
you are in the Map Builder tab, you can save your progress to an m-file using
Save Session.

Open the SLAM Map Builder App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis,

click  SLAM Map Builder.
• MATLAB Command Window: Enter slamMapBuilder

Examples

Build and Tune a Map Using Lidar Scans with SLAM

The SLAM Map Builder app helps you build an occupancy grid from lidar scans using
simultaneous localization and mapping (SLAM) algorithms. The map is built by estimating
poses through scan matching and using loop closures for pose graph optimization. This
example shows you the workflow for loading a rosbag of lidar scan data, filtering the data,
and building the map. Tune the scan map by adjusting incremental scan matches and
modifying loop closures.

Open the App

In the Apps tab, under Control System Design and Analysis, click SLAM Map
Builder.

Also, you can call the function:

slamMapBuilder

Import Lidar Scans from rosbag

Click Import > Import from rosbag to load a rosbag. The provided rosbag,
southend.bag, contains laser scan messages. Select the file and open. The scans are
shown in the Import tab.
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In the Import Tab, specify the import parameters. The Lidar Topic is preselected as /
scan because that is the only sensor_msgs/LaserScan topic found. If odometry is
available as a tf tree, select Use TF, and specify the Lidar Frame (sensor frame) and
the Fixed Frame (world frame).

Select the desired Start Time (s) and End Time (s). Because the scans are captured at
a high frequency, downsample the scans to reduce data processing. Select the desired
percentage of scans in Downsample Scans to (%). Scans are evenly sampled. For
example, 5% is every 20th scan.

Click Apply to apply filtering parameters.

Use the slider or arrow keys as the bottom to preview the scans.

Once you are done filtering, click Close.

Tune SLAM Settings

The SLAM algorithm can be tuned using the SLAM Settings dialog. The parameters
should be adjusted based on your sensor specifications, the environment, and your robotic
application. For this example, increase Loop Closure Threshold from 200 to 300. This
increased threshold decreases the likelihood of accepting and using a detected loop
closure. Set the Optimization Interval to 10. With every 10th loop closure accepted, the
pose graph is optimized to account for drift.
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Build the Map

After filtering your data and setting the SLAM algorithm settings, click Build. The app
begins processing scans to build the map. You should see the slider progressing and scans
being overlaid in the map. The estimated robot trajectory is plotted on the same scan
map. Incremental scan matches are shown in the Incremental Match pane. Whenever a
loop closure is detected, the Loop Closure pane shows the two scans overlaid on each
other.
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At any time during the build process, if you notice the map is distorted or an incremental
match or loop closure looks off, click Pause to select scans for adjustment. You can
modify scans at the end of the build process as well. Navigate using the arrow keys or
slider to the point in the file where the distortion first occurs. Click the Incremental
Match or Loop Closure buttons to adjust the currently displayed scan poses. In this
example, we manually created a bad loop closure that does not normally occur with this
data set at scan 218.
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Click the Loop Closure button. This opens a tab for modifying the loop closure relative
pose.

To ignore the loop closure completely, click Ignore. Otherwise, manually modify the
relative scan pose until the scans line up.

Click Pan Scan or Rotate Scan, then click and drag in the figure to align the two scans.
Click Accept when you are done. You can do this for multiple scans.
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After you modify your scan poses for incremental matches and loop closures, click Sync
to apply changes. SyncFast updates the map without searching for new loop closures and
reduces computation time if you have already processed all the scans.

Export Occupancy Grid

Once you have synced your changes and finished building the map, you should see a fully
overlaid scan map with a robot trajectory.
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Click Export Occupancy Grid to get a final occupancy map of your environment as a
occupancyMap object. Specify the variable name to export the map to the workspace.
You can create a map from a subset of scans by scrolling back to the desired frame before
exporting and selecting Up to currently selected scan.
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Call show on the stored map to visualize the occupancy map.

show(myOccMap)
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You can also save a SLAM Map Builder app session using the Save Session button. The
app writes the current state of the app to a .mat file that can be loaded later using Open
Session.

• “Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
• “Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar

Scans”

Programmatic Use
slamMapBuilder(bag) opens the SLAM Map Builder app and imports the rosbag log
file specified in bag, a BagSelection object created using the rosbag function. The app
opens to the Import tab to filter the sensor data in your rosbag.

slamMapBuilder(sessionFile) opens the SLAM Map Builder app from a saved
session file name, sessionFile. An app session file is created through the Save Session
button in the app toolstrip.

slamMapBuilder(scans) opens the SLAM Map Builder app and imports the scans
specified in scans, a cell array of lidarScan objects. The app assumes you have
prefiltered your scans and skips the import process. Click Build to start building the map.

slamMapBuilder(scans,poses) opens the SLAM Map Builder app and imports the
scans and poses. scans is specified as a cell array of lidarScan objects. poses is a
matrix of [x y theta] vectors that correspond to the poses of scans. The app assumes
you have prefiltered your scans and skips the import process. Click Build to start
building the map.

More About

Import and Filter a rosbag
When you click the Import button, specify the parameters for your rosbag and how you
want to filter the data in the toolstrip. You must Apply your settings to see the scans
updated in the figures.

• Select the ROS topic for the lidar scans and odometry (if available).
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• In Odom Topic, if you select Use TF, specify the frame of the lidar scan sensor, Lidar
Frame, and the base fixed frame of the vehicle, Fixed Frame. The items in the drop
down menu are generated based on the available frames in the tf transformation tree
of the rosbag.

• Specify the Start Time and End Time if you want to trim data from rosbag. You can
use the sliders or manually type in your time values.

• Select the desired downsample percentage of scans in Downsample Scans. This
evenly downsamples the scans based on the percentage. For example, a value of 25%
would only select every fourth scan.

• Click Apply to see the new filtered scans and apply all settings. Close the tab when
you are done.

If you'd like more control over filtering scans in the rosbag, import your rosbag into
MATLAB using rosbag. Filter the rosbag using select. To open the app using your
custom filtered rosbag, see Programmatic Use on page 5-13.

Tune SLAM Settings
To improve the automatic map building process, the SLAM algorithm has tunable
parameters. Click SLAM Settings to tune the parameters. Use Lidar SLAM Parameters
to affect different aspects of the scan alignment and loop closure detection processes.
Also, tune the NLP Solver Parameters to change how the map optimization algorithm
improves the overall map based on loop closures.

Lidar SLAM Parameters:

• Map Resolution (cells/m) –– Resolution of the map. The resolution affects the
location accuracy of the scan alignment and defines the output size of the occupancy
grid.

• Lidar Range [min,max] (m) –– Range of lidar sensor readings. When processing the
lidar scans, readings outside of the lidar range are ignored.

• Loop Closure Threshold –– Unitless threshold for accepting loop closures.
Depending on your lidar scans, the average loop closure score varies. If the build
process does not find loop closures and the vehicle revisits locations in the map,
consider lowering this threshold.

• Loop Closure Search Radius (m) –– Radius to search for loop closures. Based on the
odometry pose, the algorithm searches for loop closures in the existing map within the
given radius in meters.
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• Loop Closure Max Attempts –– Number of attempts at finding loop closures. When
this number increases, the algorithm makes more attempts to find loop closures in the
map but increases computation time.

• Loop Closure Auto Rollback –– Allow automatic rejection of loop closures. The
algorithm tracks the residual error from the map optimization. If it detects a sudden
change in the error and this parameter is set to on, the loop closure is rejected.

• Optimization Interval (# of Loop Closures) –– Number of detected loop closures
accepted to trigger optimization. By default, the map is optimized with every loop
closure found.

• Movement Threshold [Linear,Angular] (m,rad) –– Minimum change in pose
required to accept a new scan. If the pose of the vehicle does not exceed this
threshold, the next scan is discarded from the map building process.

NLP Solver Parameters:

• Max Iterations –– Maximum number of iterations for map optimization. Increasing
this value may improve map accuracy but increases computation time.

• Max Time (s) –– Maximum time allowed for map optimization specified in seconds.
Increasing this value may improve map accuracy but increases computation time.

• Gradient Tolerance –– Lower bound on the norm of the gradient of the cost function
for optimization. Lowering this value causes the optimization to run longer to search
for a local minimum but increases the computation time.

• Function Tolerance –– Lower bound on the change in the cost function for
optimization. Lowering this value causes the optimization to run longer to search for a
local minimum but increases the computation time.

• Step Tolerance –– Lower bound on the step size for optimization. Lowering this value
causes the optimization to run longer to search for a local minimum but increases the
computation time.

• First Node Pose [x,y,theta] (m,rad) –– Pose of the first node in the graph. If you
need to offset the position of the scans in the map, specify the position, [x y], in
meters and orientation, theta, in radians.

After changing any of these settings, the map building process must be restarted to
rebuild the map with the new parameters.

Modify Incremental Matches and Loop Closures
This app allows you to manually modify incremental scans and adjust detected loop
closures. If you notice scans are not properly aligned after you build the map, use the
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Incremental Match and Loop Closure buttons to open their modification tabs. Use the
modification toolstrip buttons to adjust the relative pose between scans.

• Ignore –– When modifying loop closures, you can simply ignore loop closures if they
are inaccurate. The algorithm always discards ignored loop closure if detected in the
same app session. You cannot ignore incremental scan matches.

• Pan Scan –– Click this button to manually shift the pose. After selecting, click and
drag inside the map to shift the scans and overlay them properly. Align all the points of
the scans until you are satisfied. You can manually specify the X, Y location in the
Relative Pose section as well.

• Rotate Scan –– Click this button to manually rotate the pose. After selecting, click
and drag inside the map to rotate the scans and overlay them properly. Align all the
points of the scans until you are satisfied. You can manually specify the Theta location
in the Relative Pose section as well.

Sync the Map
After making modifications to the map building process using Incremental Scans and
Loop Closures, you must sync the map to apply the changes. Based on the changes you
make to properly align scans, the overall map shifts and alignments change for every scan
after your modification. You have two options after making your modifications, Sync or
Sync Fast. If you click Sync Fast, the changes to the poses are automatically applied and
no other changes to the map occur. Sync restarts the entire map building and loop
closure detection processes starting at the first modification. The specified modifications
are applied, but the algorithm attempts to realign other scans and search for new loop
closures as well.

See Also
Functions
buildMap | matchScans | matchScansGrid | optimizePoseGraph | rosbag

5 Apps in Navigation Toolbox
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Objects
lidarSLAM | lidarScan | occupancyMap | poseGraph

Topics
“Implement Simultaneous Localization And Mapping (SLAM) with Lidar Scans”
“Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans”

Introduced in R2019b

 SLAM Map Builder
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